首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge-transfer salts [Co(C5H5)2][M(dpt)2] (M = Ni and Pt; dpt = cis-1,2-diphenylethene-1,2-dithiolate) were synthesized and crystallographically characterized. [Co(C5H5)2][Ni(dpt)2] crystallizes in the monoclinic space group C2/c with a = 25, 607(3) Å, b = 9.4151(11) Å, c = 14.407(4) Å, β = 101.373(22)°, V = 3405.3(10) Å3 and Z = 4. [Co(C5H5)2][Pt(dpt)2] belongs to the triclinic space group $ {\rm P}\bar 1 $ with a = 9.4666(11) Å, b = 13.9869(12) Å, c = 14.2652(9) Å, α = 99.983(6)°, β = 90.034(7)°, γ = 109.751(7)°, V = 1747.2(3) Å3 and Z = 2. Both structures consist of ··· D+A?D+A?D+A? ··· linear chains with the local C5 axis of the eclipsed [Co(C5H5)2]+ cation parallel to the best MS4 plane of the [M(dpt)2]? anion. Magnetic susceptibility measurements show that χM T values of the complexes [Co(C5H5)2][M(dpt)2] (M = Ni, Pd, and Pt) remain nearly constant in the temperature range 15–300 K, but decrease rapidly with further decreasing of temperature, indicating weak antiferromagnetic interactions at low temperatures.  相似文献   

2.
Crystalline NO[Mn(NO3)3] ( I ) and (NO)2[Co(NO3)4] ( II ) were synthesized by reaction of the corresponding metal and a liquid N2O4/ethylacetate mixture. I is orthorhombic, Pca21, a = 9.414(2), b = 15.929(3), c = 10.180(2) Å, Z = 4, R1 = 0.0286. II is monoclinic, C2/c, a = 14.463(3), b = 19.154(4), c = 13.724(3) Å, β = 120.90(3), Z = 12, R1 = 0.0890. Structure I consists of [Mn(NO3)3] sheets with NO+ cations between them. Two types of Mn atoms have CNMn = 7 and 8. Structure II is ionic containing isolated [Co(NO3)4]‐anions and NO+ cations with CNCo = 8. Crystals of Mn(NO3)2 ( III ) and Co(NO3)2 ( IV ) were obtained by concentration of metal nitrate hydrate solutions in 100% HNO3 in a desiccator with P2O5. III is cubic, Pa 3, a = 7.527(2) Å, Z = 4, R1 = 0.0987. IV is trigonal, R 3, a = 10.500(2), c = 12.837(3) Å, Z = 12, R1 = 0.0354. The three dimensional structure III is isotypic to the strontium and barium dinitrates. Structure IV contains a three dimensional network of interconnected Co(NO3)6/3 units with a distorted octahedral coordination environment of Co atoms. General correlations between central atom coordination and coordination modes of NO3 groups are discussed.  相似文献   

3.
The title compound, [Co(NCS)2(C11H26N4)]2[Zn(NCS)4]·C2H5OH, has two similar cations with the CoIII atom coordinated in a planar fashion by the 13‐membered cyclic tetra­amine, in the 1R,4S,7R,10S configuration, and with trans isothio­cyanate ligands. The six‐membered chelate ring is in a chair conformation, with one axially and one equatorially oriented methyl substituent [mean Co—N = 1.948 (2) Å]. The `opposite' chelate ring (N4 and N7) is in an eclipsed conformation [mean Co—N = 1.928 (2) Å], and the `side' chelate rings have gauche conformations. The mean Co—NNCS distance is 1.928 (2) Å. Both cations have one Co—N—C group nearly linear and the other appreciably bent, with mean Co—N—C angles of 178.7 (1) and 160.4 (1)°, respectively. The [Zn(NCS)4]2− anion is approximately tetra­hedral, with Zn—N = 1.951 (1)–1.986 (1) Å, N—Zn—N = 104.5 (1)–111.9 (1)° and Zn—N—C = 152.5 (1)–179.4 (1)°. One NH group is hydrogen bonded to the ethanol O atom and the other NH groups are bonded to thio­cyanate S atoms, forming a network.  相似文献   

4.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

5.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

6.
N-(R-carbamothioyl)cyclohexanecarboxamides (R: diethyl, di-n-propyl, di-n-butyl, diphenyl and morpholine-4) and their Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analyses, FT-IR and NMR methods. N-(diethylcarbamothioyl)cyclohexanecarboxamide, HL1, C12H22N2OS, crystallizes in the orthorhombic space group P212121, with Z = 4, and unit cell parameters, a = 6.6925(13) Å, b = 9.0457(18) Å, c = 22.728(5) Å. The conformation of the HL1 molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1–C6–N2–C5, C6–N2–C5–N1 and S1–C5–N2–C6 of 1.68°, ?67.47° and 115.50°, respectively. The structure of HL1 also shows a delocalization of the π electrons of the thiocarbonyl group over the C–N bonds. The ring puckering analysis shows that the cyclohexane ring has a chair conformation. The bis(N-(morpholine-4-carbonothioyl)cyclohexane carboxamido)nickel(II) complex, Ni(L5)2, C24H38N4NiO4S2, crystallizes in the monoclinic space group P21/c, with Z = 4, and unit cell parameters, a = 16.919(3) Å, b = 8.3659(17) Å, c = 19.654(4) Å, β = 107.43(3)°. Ni(L5)2 is a cis-complex with a slightly distorted square-planar coordination of the central nickel by two oxygen and two sulfur atoms.  相似文献   

7.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [Co(NH3)6][Os(SCN)6] From the mixture of the linkage isomers [Os(NCS)n(SCN)6–n]3–, n = 0–2, pure [Os(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of [Co(NH3)6][Os(SCN)6] (trigonal, space group R 3, a = 12.368(2), c = 11.830(2) Å, Z = 3) reveals that the thiocyanate ligands are exclusively S‐coordinated with the Os–S distance of 2.388 Å and the Os–S–C angle of 108.8°. The IR and Raman spectra of (n‐Bu4N)3[Os(SCN)6] are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constant fd(OsS) is 1.42 mdyn/Å.  相似文献   

8.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

9.
Abstract

When a mixture of excess CuSCN and 2-benzoylpyridine (2-Bzpy) stands in an ethanolic medium for about ten days in contact with air, the intramolecular oxidative cyclization of 2-Bzpy occurs with formation of the ionic compound [9-oxo-indolo[1,2-a]pyridinium]+ [Cu(SCN)2]? (1). In contrast, interaction of CuCN and 2-Bzpy in ethanol leads to formation of the polymer [Cu(CN)(2-Bzpy)]n (2). The reaction of Cu(II) and 2-Bzpy in presence of excess SCN? in ethanol affords (1) and the green monomer [Cu(SCN)2(2-Bzpy)2] (4). These complexes, along with the 1:1 CuSCN complex of 2-Bzpy (3) are studied by IR, Raman and electronic spectroscopic methods and X-ray structural analysis of (1) and (2). Crystals of (1) are monoclinic, space group P21/n (No. 14), with a = 5.887(1), b = 36.142(7), c = 7.083(1) Å, B = 109.56(1)°, Z = 4, and RF = 0.033 for 2487 observed MoKα data, (2) monoclinic, space group P21/c (No. 14), a = 14.393(3), b = 8.881(2), c = 9.287(2) Å, B = 103.80(3)°, Z = 4, and RF = 0.036 for 2030 observed MoKα data. The structure of (1) consists of a packing of [9-oxo-indolo [1,2-a]pyridinium]+ cations and [Cu(SCN)2]? anions. Puckered layers are formed by the [Cu(SCN)2]? component with four-coordinate Cu(I) and one tridentate μ(N,S,S)-thiocyanato ligand. Complex (2) features distorted tetrahedral Cu(I) geometry, formed by a bidentate chelating 2-Bzpy and linear C- and N-bonded bidentate cyano groups, which link adjacent copper centers to form zigzag chains extending along the c axis. Complexes (1) and (2) do not fluoresce at room temperature.  相似文献   

10.
Three new complexes, [Co(hfac)2(NIToPy)] (1), [CoCl2(NIToPy)2] (2), and [Co(NIToPy)3](ClO4)2 (3), with NIToPy = 2-(2-Pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-oxy-3-oxide, and hfac = hexafluoroacetylacetonate, have been synthesized. The compound 3 crystallized in the monoclinic space group P21, with two molecules in a unit cell of dimensions a = 10.565(4) Å, b = 14.714(9) Å, c = 14.596(7) Å, and β = 107.10(4)°. The temperature-dependent magnetic susceptibility measurements (4.2 K-300 K) for the complexes demonstrated strong antiferromagnetic exchange interaction between cobalt(II) ion and NIToPy radical spins with J = ?140.1 cm?1 for 1, J = ?94.2 cm?1 for 2, and J = ?161.8 cm?1 for 3, respectively. The magneto-structural correlation in these complexes has been discussed.  相似文献   

11.
Dodecanuclcar cluster complexes [Mo12S16(PEt3)10] 1 and [Mo12Se16(PEt3)10] 2 have been prepared by the reactions of [Mo6S8(PEt3)6] with sulfur or [Mo6Se8(PEt3)6] with Cp2TiSe5, respectively, in toluene at refluxing temperature. The structures have been determined at 173 K by X-ray crystallography. The compound 1 ·3CHCl3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 14.859(5) Å, b = 15.868(4) Å, c = 14.200(7) Å, α = 100.58(3)°, β = 117.58(3)°, γ = 79.53(2)°, V = 2899(1) Å3, and Z = 1. Full-matrix least-squares refinement using 9016 observed reflections (Io > 2σ(Io)) gave R = 0.056, and Rw = 0.045. The data for 2 ·2CHCl3 are: triclinic, $ {\rm P}\bar 1 $, a = 15.737(4) Å, b = 18.763(9) Å, c = 13.062(4) Å, α = 102.45(3)°, β = 128.54(2)°, γ = 69.49(3)°, V = 2825 Å3, Z = 1, R = 0.096, and Rw = 0.120 for 5922 reflections (Io > 2σ(Io)). The cluster complexes 1 and 2 have two octahedral molybdenum cluster units linked by the rhomboidal intercluster Mo24-E)2 bonding. The intercluster Mo—Mo distances in 1 are 3.419 Å and 2 3.551 Å. The cyclic voltammetry of 1 and 2 shows two oxidation and two reduction steps separated as large as 380–490 mV. The UV-Vis spectra of the dodecanuclear cluster complexes 1 and 2 have an extra weak band at around 744 nm which is absent in the starting octahedral cluster complexes.  相似文献   

12.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

13.
One binuclear complex [Co(bpm*)2(dca)]2(ClO4)2 ( 1 ) and two 1D chain CoII complexes, {[Co(bpm)2(dca)](ClO4)}n ( 2 ) and [Co(dmf)2(dca)2]n ( 3 ), (bpm*: bis[(3, 5‐dimethyl)pyrazolyl]methane; bpm: bis(pyrazolyl)methane; dca: dicyanamide; dmf: N, N‐dimethyl formamide) have been prepared and structurally characterized. The cobalt atoms are hexa‐coordinated forming a slightly distorted octahedral coordination. Compound 1 crystallizes in the monoclinic system, space group P21/c, a = 9.849(3)Å, b = 21.944(7)Å, c = 13.814(5)Å, β = 94.824(6), Z = 4, R1 = 0.0672, wR2 = 0.1395. 1 is a binuclear complex linked by two dca ligands, and each CoII ion is coordinated by two terminal bpm* ligands. Compound 2 crystallizes in the orthorhombic system, space group Cmcm, a = 10.377(4)Å, b = 13.594(5)Å, c = 15.999(6)Å, Z = 4, R1 = 0.0609, wR2 = 0.1328. The structure of 2 can be described as a one‐dimensional zigzag chain of CoII ions bridged by one dca ligand. Each CoII ion in the chain is coordinated by two bpm ligands. Compound 3 crystallizes in the monoclinic system, space group C2, a = 13.559(15)Å, b = 7.393(8)Å, c = 8.110(9)Å, β = 112.228(15), Z = 2, R1 = 0.0260, wR2 = 0.0760. 3 has a one‐dimensional linear chain of CoII ions bridged by two dca ligands, in which each CoII ion is coordinated with two dmf molecules.  相似文献   

14.
In poly[[bis(μ‐4,4′‐bi‐1H‐pyrazole‐κ2N2:N2′)bis(3‐carboxyadamantane‐1‐carboxylato‐κO1)cobalt(II)] dihydrate], {[Co(C12H15O4)2(C6H6N4)2]·2H2O}n, (I), the Co2+ cation lies on an inversion centre and the 4,4′‐bipyrazole (4,4′‐bpz) ligands are also situated across centres of inversion. In its non‐isomorphous cadmium analogue, {[Cd(C12H15O4)2(C6H6N4)2]·2H2O}n, (II), the Cd2+ cation lies on a twofold axis. In both compounds, the metal cations adopt an octahedral coordination, with four pyrazole N atoms in the equatorial plane [Co—N = 2.156 (2) and 2.162 (2) Å; Cd—N = 2.298 (2) and 2.321 (2) Å] and two axial carboxylate O atoms [Co—O = 2.1547 (18) Å and Cd—O = 2.347 (2) Å]. In both structures, interligand hydrogen bonding [N...O = 2.682 (3)–2.819 (3) Å] is essential for stabilization of the MN4O2 environment with its unusually high (for bulky adamantanecarboxylates) number of coordinated N‐donor co‐ligands. The compounds adopt two‐dimensional coordination connectivities and exist as square‐grid [M(4,4′‐bpz)2]n networks accommodating monodentate carboxylate ligands. The interlayer linkage is provided by hydrogen bonds from the carboxylic acid groups via the solvent water molecules [O...O = 2.565 (3) and 2.616 (3) Å] to the carboxylate groups in the next layer [O...O = 2.717 (3)–2.841 (3) Å], thereby extending the structures in the third dimension.  相似文献   

15.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

16.
The linear trinuclear cobalt(II) complex [Co3(pytrz)6(H2O)6](NO3)6 (1) with pytrz = 4-(2-pyridine)-1,2,4-triazole has been prepared and characterized. It crystallizes in the rhombohedral R-3 space group with Z = 3, a = 13.955(2), b = 13.955(2), c = 28.942(9) Å, γ = 120°, V = 4881.2(18) Å3. The structure of 1 comprises the cation [Co3(pytrz)6(H2O)6]6+, in which linear trinuclear Co(II) units are bridged by six L ligands and have six aqua molecules as terminal ligands. The six free nitrates link the terminal aqua ligands through N–H ··· O hydrogen bonds with C3 symmetry. 1 was characterized by FT-IR, electronic spectra and magnetic measurements. The variable-temperature magnetic measurements reveal weak anti-ferromagnetic interactions in 1.  相似文献   

17.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

18.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

19.
The compound [Co(En)3]2[Hg2(H2O)Cl6]Cl4 (I, En is ethylenediamine) has been synthesized and studied by X-ray diffraction. The crystals of I (a = 21.8745(14) Å, b = 10.6008(6) Å, c=15.4465(12) Å, space group Pna21) consist of tris(ethylenediamine)cobalt(III) complexes (the unit cell contains two [Co(En)3]3+ cations of opposite chirality). [Hg2(H2O)Cl6]2? anions, and isolated chloride ions. The complex anion consists of the tetrahedral [HgCl4]2? group (Hg-Cl, 2.44–2.56 Å) and the hydrated molecule [Hg(H2O)Cl2] (Hg-Cl, 2.301 and 2.308 Å; Hg-O, 2.788 Å) combined by weak Hg-Cl interactions (2.915 and 3.220 Å).  相似文献   

20.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号