首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

Reactions of metal carbonyl cations (M(CO)6 +, M = Mn, Re) with hydride-, methide- or halide-containing metal carbonyl anions (Fe(CO)4R?, R = H, Me; W(CO)5R?, R = H, Me, Cl, Br, I) produce products that indicate several mechanisms are operative. Reactions of the halo-tungsten complexes produce neutral, solvated tungsten complexes, W(CO)5(CH3CN) and W(CO)4(CH3CN)2 and M(CO)5X in a reaction that appears to be initiated by decomposition of W(CO)5X?. In contrast, the tungsten hydride and methide complexes react, predominantly, by transfer of the hydride or methide to a carbonyl of the cation at a much faster rate. The iron hydride and methide complexes react by iron-based nucleophilicity involving a two-electron process.  相似文献   

2.
The thiocarbonyl-bridged complex Cp2Fe2(CO)3CS is obtained by the reaction of CpFe(CO)2? and (PhO)2CS in THF. Infrared and NMR spectra show that the compound exists in solution in interconverting cis and trans forms, but that the isomerization occurs more slowly than for the carbonyl analog [CpFe(CO)2]2. Most reagents which cleave [CpFe(CO)2]2, such as Br2, HgCl2, and O2/HBF4, do not give simple cleavage reactions with Cp2Fe2(CO)3CS. Reductive cleavage of Cp2Fe2(CO)3CS with Na(Hg) gives the thiocarbonyl anion CpFe(CO)(CS)?, which reacts with Ph3SnCl to form CpFe(CO)(CS)SnPh3. Methylamine reacts with CpFe(CO)(CS)SnPh3 to give CpFe(CO)(CNMe)SnPh3, while ethylenediamine gives the carbene complexes CpFe(CO)C(N2C2H6)SnPh3. The preparation of another new carbene complex, [CpFe(CO)2C(OMe)2]PF6, is also described.  相似文献   

3.
The reaction of Cp2Fe2(CO)4 with NHEt2 and CS2 gives the monodentate dithiocarbamate CpFe(CO)21-SC(S)NEt2 (Ia), whereas the same reaction with CP2Mo2(CO)6 gives the chelate CPMo(CO)22-S2CNEt2 (II). New complexes of amines CpFe(CO)2(NHR2)+PF6- (III, R  Me, Et, SiMe3) have been synthesized by treating CpFe(CO)2Cl with NHR2. They do not react with CS2 and give only [CpFe(CO)2]2 upon refluxing with bases such as t-BuOK or NEt(i-Pr)2, but concerted CS2 insertion in the presence of a base immediately gives I at 20°C. This clean route is used to synthesize the monodentate diselenocarbamate CpFe(CO)21-SeC(Se)NMe2 (IV) by reaction of CSe2 with III (R  Me) in the presence of t-BuOK. Whereas the known reaction of CpFe(CO)2Cl with Na+S2CNMe2? gives Ib (R  Me), the analogous reaction of C5Me5Me(CO)2Br gives specifically the thermally stable chelate C5Me5Fe(CO)-η2-S2CNMe2 (Vb′).  相似文献   

4.
Abstract

Three dimolybdenum alkyne complexes containing functionally substituted ligands [Mo2(μ-CHCH)(CO)45?C5H4C(O)R)2] [R ? OEt, (1a); R ? Me, (1b); R ? Ph, (1c)] were synthesized by reactions of acetylene with in situ generated metal-metal triply bonded complexes [Mo(CO)25?C5H4C(O)R)]2 (R ? OEt, Me, Ph). Further reaction of (1a), (1b) or (1c) with Co2(CO)8 in refluxing toluene gave another three new butterfly compounds [Co2Mo2-(μ4-CHCH)(μ-CO)4(CO)45-C5H4C(O)R)2] [R ? OEt, (2a); R ? Me, (2b); R ? Ph, (2c)]. The resulting compounds were characterized by elemental analyses, IR, 1H NMR and MS. The crystal structure of (2b) was determined by single-crystal X-ray analysis. The results indicate that the existence of functional groups on the cyclopentadienyl ring has an influence on the reactivity of this type of complex.  相似文献   

5.
The metal carbonyl anions [Fe(η-C5H5(CO)2]? and [Re(CO)5] undergo regio- and site-specific [2 + 2]-cycloadditions with the ketenimines Ph2CCNR (R = Me, Ph) to give the (isolable) anionic complexes [LnM{C(CPh2)N(R)C(O)}]? (LnM = Fe(η-C5H5)CO, Re(CO)4) which have been alkylated and acylated at the exocyclic oxygen atom of the carbonyl function. The result is stable neutral complexes having a metallaazetidine structure which is composed of an α-metallated enamine and an N,O carbene part. IR, 1H, and 13C NMR data are presented.  相似文献   

6.
Chiral carbene-manganese(I) complexes have been synthesized by the cyclo-addition of dimethyl acetylenedicarboxylate to the coordinated CS2 ligand in Mn(η2-CS2)(CO)(L)C5H4R (L = P(OMe)3; PMe2Ph; PMe3). Irrespective of the nature of the ligand L, these 1,3-dithiol-2-ylidenemanganese(I) complexes are stable towards isomerisation into heterometallocycles and exhibit low frequency carbonyl absorption bands in the infrared consistent with a strong electron releasing effect of the carbene ligand. The structure of Mn(CS2C2(CO2Me)2)(CO)(P(OMe)3)(C5H5) has been determined by X-ray analysis of a suitable crystal. The molecule shows a carbene carbonmanganese bond C(7)Mn of length 1.876 Å and a planar carbene which does not adopt the 1,3-dithiolium aromatic-ring geometry but contains a carboncarbon double bond, C(8)C(9), of length of 1.341 Å. The CO2Me groups are out of the plane of the carbene ligand and two positions with equal occupancy are found for each oxygen atom O(3) and O(5) belonging to the CO groups.  相似文献   

7.
Formation of Organosilicon Compounds. 80. Si-Metalation of 1,3,5-Trisilacyclohexanes by Means of Trisition Metal Complexes Several Si-transition metal-substituted 1,3,5-trisilacyclohexanes are reported. l-Bromo-1,3,5-trisilacyclohexane reacts with the metal carbonyl anions W(CO)5cp?, Mo(CO)3cp-, Cr(CO)3cp?, Mn(CO)3?, Fe(CO)2cp?, or Co(CO)4minus;, resp., yielding monosubstituted derivatives as 6, e. g.(cp = π-cyclopentadienyl). 1,3-Dibromo-1,3,5-trisilacyclohexane forms disubstituted compounds aa 7, e. g., with 2 moles of the metal carbonyl anions Fe(CO)2cp?, Mn(CO)5? or Co(CO)4?. Starting from (H2c? SiHBr)3 compound 13 is accessible by reaction with KCo(CO)4. In the soluted compounds the metal carbonyl groups occupy the equatorial positions in the chair form of the six membered ring. The reaction of 13 with Co2(CO)8 yields 17 , whereas 6 preferrably forms 18 . Starting from (H2C? SiH2)3 the reaction with Co2(CO)2 preferrably yields 19. The reported compounds are crystalline, air – and moisture – sensitive. The reported formulae are assured by analysis, IR, and NMR investigations.  相似文献   

8.
The 13C NMR spectra of the five series of chalcocarbonyl complexes, (η6-C6H6)Cr(CO)2(CX), (η6-C6H5CO2Me)Cr(CO)2(CX), (η5-C5H5)Mn(CO)2(CX), (η5-C5H4Me)Mn(CO)2(CX) and (η5-C5H5)Re(CO)2(CX) (X = O, S, Se), and some of their derivatives including several 13C-enriched species have been investigated at ?30 to ?50°C. The chemical shift variations observed with changes in the CX ligand suggest that the π-acceptor/σ-donor capacity of these ligands increases in the order CO < CS < CSe. Changes in the nuclear charge and in the electronic density at the central metal atom affect δ(13CS) and δ(13CO) in the same manner. The increased downfield chemical shift for δ(13CX) in the chromium and manganese series on changing X from O to S and Se is in the direction expected from considerations of Pople's paramagnetic shielding expression.  相似文献   

9.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

10.

The reaction of [Co2(CO)8] with DPPA at room temperature yields a diphosphine bridged product [Co4(CO)12(μ-Ph2-P-C≡C-P-Ph2)2] 1. Heating of 1 at 45°C promoted cleavage of the P-Csp bond with the formation of binuclear, phosphido-bridged σ-π-acetylide isomer complexes [Co2(CO)5(μ-PPh2) (μ-σ-π-C≡C-PPh2 )] 2a, 2b. Heating (60°C) of the complex [CpFe(CO)2CH3] and DPPA affords mono and binuclear acetyl, P-coordinated diphenylphosphinoalkyne metal complexes [CpFe(Ph2P-C≡C-PPh2)CO(COCH3)] 3, [CpFeCO(COCH3)]2-μ-(Ph2P-C≡C-PPh2) 4.  相似文献   

11.
Benzoylformyl complexes CpMo(COCOPh)(CO)3 (1) and CpFe(COCOPh)(CO)2 (2) were prepared by the reactions of [CpMo(CO)3]? and [CpFe(CO)2]? ions with PhCOCOCl, respectively. The single-crystal structure of complex 1 has been determined by X-ray diffraction with crystal data: P21/c, a = 6.674 (3) Å, b = 13.301 (4) Å, c= 16.903(6) Å, β = 90.82 (5)°,V = 1500(1) Å3, Z = 4. Least-squares refinement on 894 reflections with I ≥ 2.0 σ(I) led to R = 0.041, RW = 0.042. Complex 1 contains a near perpendicular s-trans oxalyl moiety in the benzoylformyl ligand with the torsional angle O4-C4-C5-O5 being 104 (1)°. The iron complex suffers spontaneous decarbonylation at 25 °C to yield CpFe(COPh)(CO)2.  相似文献   

12.
The reaction of Ru3(CO)12 with 2-methyl-3-morpholino-1-phenylprop-2-en-1-one (1) produced the Ru6(CO)1641122-PhC(O)-C(Me)=C)2 (2), Ru2O2(CO)43-OC(Ph)C(Me)C(H)C(Me)2C(Ph))2 (3), and [Ru(CO)2(PhCO2)(O(CH2-CH2)2NH]2 (4) complexes, which were characterized by IR and NMR spectroscopy. The structures of the complexes were established by X-ray diffraction. The formation of the complexes is accompanied by deamination of ligand 1. Complexes 2 and 3 bearing the vinyl ketone groups contain five-membered oxaruthenacycles and dihydropyran rings. Morpholine is not removed from the reaction mixture and leads to the formation of complex 4. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2063–2068, December, 2006.  相似文献   

13.
The reactions of several mono- and poly-nuclear carbonyl metallates with nitrosonium ion have been studied. Besides simple substitution of a carbon monoxide with NO+ some reactions yielded products containing other nitrogeneous ligands. When [CoRu3(CO)13]? reacts with NO+, low yields of the new nitrido cluster CoRu3N(CO)12 are formed. Prior conversion of [CoRu3(CO)13]? to the new hydrido cluster [H2CoRu3(CO)12]? under hydrogen, followed by nitrosylation, forms the new imido cluster H2Ru3(NH)(CO)9 in very low yield. The reaction of [FeCO3(CO)12]? with NO+ also generates an imido cluster, FeCo2(NH)(CO)9, in 15% yield. This cluster has been characterized by X-ray crystallography and was found to be similar to the tricobalt alkylidyne clusters. (Triclinic crystal system, P1 space group, Z=2, a 6.787(1), b 8.016(1), c 13.881(2) Å, α 95.50(1), β 100.77(1), γ 107.93(1)°. Modifications of the nitrosylations using NO+ were studied. In particular, the addition of triethylamine or N-t-butylbenzaldimine allowed the use of NO+ in THF without solvent decomposition. With [CpMo(CO)3]? and [CpFe(CO)2]? the N-nitrosoiminium species appears to form transient alkylmetals which further react to give the dimers [CpMo(CO)3]2 and [CpFe(CO)2]2.  相似文献   

14.
The reaction of CpFe(CO)2TePh (I) with ferricinium hexafluorophosphate as an oxidant affords ionic complex {[CpFe(CO)2]2(μ-TePh)}+PF 6 ? (II) with the simultaneous formation of diphenylditellurium. The decarbonylation of compound II by Me3NO followed by the addition of complex I affords trinuclear complex {[CpFe(CO)2(μ-TePh)]2Fe(CO)Cp}PF6 (III). The corresponding tetrafluoroborate (IV) is synthesized similarly. The heating of compound I with PPh3 gives CpFe(CO)(PPh3)TePh (V) that reacts with ionic complex [CpMn(CO)2(NO)]PF6 (VI) to form binuclear heterometallic ionic complex [CpFe(CO)(PPh3)(μ-TePh)Mn(CO)(NO)Cp]PF6 (VII). A similar reaction of Cp′Fe(CO)2TePh (Cp′ is methylcyclopentadienyl) with compound VI affords heterometallic [Cp′Fe(CO)2(μ-TePh)Mn(CO)(NO)Cp]PF6 (VIII). The structures of compounds II, IV, VII, and VIII are determined by X-ray diffraction analysis (CIF files CCDC 963285, 963286, 963288, and 963289, respectively).  相似文献   

15.
The compounds tricarbonyl(η5‐1‐iodocyclopentadienyl)manganese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5‐1‐iodocyclopentadienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] or bis(cymantrenyl)acetylene, [Mn2(C12H8)(CO)6], (II), and [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their molecules display inversion symmetry about the mid‐point of the ligand C[triple‐bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The molecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] interactions along the crystallographic b axis. The zigzag chains are bound to each other by weak intermolecular C—H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H...O hydrogen bonds and π(Csp2)–π(Csp2) stacking interactions between pairs of molecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring molecules, forming pairwise interactions in a sheared antiparallel dimer motif, are encountered in only 35% of all carbonyl interactions for transition metal–carbonyl compounds.  相似文献   

16.
Heterocyclic-thiocarboxylato complexes of iron, CpFe(CO)2SCO-het (het?=?2-C4H3O, 2-C4H3S, CH2-2-C4H3S), have been synthesized via the reaction of iron sulfides, (μ-S x )[CpFe(CO)2]2 (x?=?3,?4), with heterocyclic acid chlorides het-COCl. Photolytic substitutions of these complexes CpFe(CO)2SCO-het with triphenylphosphine, triethylphosphite, triphenylarsine, and triphenylantimony [ER3 (E?=?P, R?=?Ph, OC2H5; E?=?As, Sb, R?=?Ph)] exclusively gave the monosubstituted complexes CpFe(CO)(ER3)SCO-het in good yields. The new complexes have been characterized by elemental analysis, UV-Vis, IR, 1H, and 31P NMR spectroscopies and by cyclic voltammetry for a representative family (1, 4a–d). The solid state structures of CpFe(CO)2SCO(2-C4H3S) (2), CpFe(CO)(PPh3)SCO(2-C4H3S) (5a), CpFe(CO)(AsPh3)SCO(2-C4H3S) (5b), and CpFe(CO)(SbPh3)SCO(2-C4H3S) (5c) were determined by X-ray crystal structure analysis.  相似文献   

17.
The rate constant for the methyl abstraction reaction of CpFe(CO)2Me has been measured with the benzyl radical clock as (1.1 ± 0.2) × 105 M−1 s−1 at room temperature. Time-resolved Fourier-transform Infrared (FTIR) absorption spectroscopy pointed towards the formation of the CpFe(CO)2 radical upon benzyl abstraction. The main stable product has been established by a linear scan of the reaction mixture as Cp2Fe2(CO)4 produced by the dimerization of the CpFe(CO)2 radicals. The transition state structure for the abstraction process was also found at UB3LYP/6-311+G* level of theory to contain a planar CH3 group.  相似文献   

18.
The anionic [MeSeFe(CO)4] and [MeSeCr(CO)5] complexes were synthesized by reaction of [PPN][HFe(CO)4] and [PPN][HCr(CO)5] with MeSeSeMe respectively via nucleophilic cleavage of the Se-Se bond. The ease of cleavage of the Se-Se bond follows the nucleophilic strength of metal-hydride complexes. Methylation of [RSeCr(CO)5?] by the soft alkylating agent MeI resulted in the formation of neutral (MeSeMe)Cr(CO)5 in THF at 0°C. In contrast, the [ICr(CO)5?] was isolated at ambient temperature. Reaction of [MeSeFe(CO)4?] or [MeSeCr(CO)5?] with HBF4 yielded (CO)3Fc(μ-SeMe)2Fe(CO)3 dimer and anionic [(CO )5Cr (μ-SeMe)Cr(CO)5?] respectively, and no neutral (HSeMe)Fe(CO)4 and (HSeMe)Cr(CO)5 were detected spectrally (IR) even at low temperature. Reaction of NOBF4 or [Ph3C][BF4] and [MeSeCr(CO)5?] resulted in the neutral monodentate (MeSeSeMe)Cr(CO)5 complex. Addition of 1 equiv CpFe(CO)2I to 2 equiv [MeSeCr(CO)5?] gave CpFe(CO)2(SeMe) and the anionic [(CO)5Cr(μ-SeMe)Cr(CO)5?] in THF at ambient temperature.  相似文献   

19.
Deprotonation of Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph Cy) for Synthesis of Heteronuclear Manganese-Gold Clusters with Mn2Aun Cores (n = 1–3) The dimanganese complexes Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph, Cy) have been deprotonated with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in tetrahydrofuran solution at 20°C to give the anions [Mn2(μ-PR2)(CO)8]?, which were isolated as tetraethylammonium salts. Both dimanganese complexes and the related anions were measured by cyclic voltammetry. The treatment of the aforementioned dimanganese complexes in thf solution with Lir' (R =Me, Ph) and subsequently with PPh3AuCl gave at 20°C three types of products: Mn2(μ-PR2(CO)8(AuPPh3),Mn2(μ-PR2)(μ-C(R′)O)(CO)6-(AuPPh3)2 and Mn2(μ-PR2)(CO)6(AuPPh3)3. The newly prepared substances were characterized by means of IR-, UV/VIS, 31P NMR data. The results of single X-ray analyses showed for the three-membered metal ring compound Mn2(μ-PPh2)(CO)8(AuPPh3) an uni-fold bridged σ(Mn? Mn) bond length of 306.7(3) pm, the metallatetrahedron complex Mn2(μ-PPh3)(μ-C(Ph)O(CO)6(AuPPh3)2 a twofold bridged σ(Mn? Mn) bond length of 300.6(4) pm and the trigonal-bipyramidal cluster Mn2(μ-Pph2)(CO)6(AuPPh3)3 an uni-fold bridged π(Mn? Mn) bond length of 274.7(3) pm. The Mn? Au bonds of these substances are accompanyied by semi-bridging CO ligands which are signified through short Au…C contact lengths in the range of 251 to 270 pm. In the substance with the Mn2Au2 metallatetrahedron core exists, additionally, such a contact with the acylic C atom of C(Ph)O bridging group of 263.4(18) pm. Such contact lengths were compared for corresponding dimanganese and dirhenium complexes.  相似文献   

20.
Further investigations into the chemistry of the rhenacyclobutadiene complexes (CO)4Re(η2-C(R)C(CO2Me)C(X)) (1: R=Me, X=OEt (1a), O(CH2)3CCH (1b), NEt2 (1c); R=CHEt2, X=OEt (1d); R=Ph, X=OEt (1e)) are reported. Reactions of 1 with alkynes at reflux temperature of toluene and at ambient temperature either under photochemical conditions or in the presence of PdO yield ring-substituted η5-cyclopentadienylrhenium tricarbonyl complexes, 2. The symmetrical alkynes RCCR (R=Ph, Me, CO2Me) afford the pentasubstituted complexes (η5-C5(Me)(CO2Me)(OEt)(Ph)(Ph))Re(CO)3 (2d), (η5-C5(Me)(CO2Me)(OEt)(Me)(Me))Re(CO)3 (2e), (η5-C5(Me)(CO2Me)(OEt)(CO2Me)(CO2Me))Re(CO)3 (2f), and (η5-C5(Me)(CO2Me)(NEt2)(CO2Me)(CO2Me))Re(CO)3 (2i) on reaction with the appropriate 1, whereas the unsymmetrical alkynes RCCR″ (R=Ph; R″=H, Me) give either only one, (η5-C5(Me)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2a)), or both, (η5-C5(Me)(CO2Me) (OEt)(Ph)(Me))Re(CO)3 (2b) and (η5-C5(Me)(CO2Me)(OEt)(Me)(Ph))Re(CO)3 (2c), (η5-C5(Ph)(CO2Me)(OEt)(Ph)H)Re(CO)3 (2g) and (η5-C5(Ph)(CO2Me)(OEt)(H)(Ph))Re(CO)3 (2h), of the possible products of [3 + 2] cycloaddition of alkyne to η2-C(R)C(CO2Me)C(X). Thermolysis of (CO)4Re(η2-C(Me)C(CO2Me)C(O(CH2)3CCH)) (1b) containing a pendant alkynyl group proceeds to (η5-C5(Me)(CO2Me)(O(CH2)3)H)Re(CO)3 (2j), a η5-cyclopentadienyl-dihydropyran fused-ring product. Competition experiments showed that each of PhCCH and MeO2CCCCO2Me reacts faster than PhCCPh with 1a. The results with unsymmetrical alkynes are rationalized by steric properties of substituents at the CC and ReC bonds and by a preference of ReC(Me) over ReC(OEt) to undergo alkyne insertion. A mechanism is proposed that involves substitution of a trans CO by alkyne in 1, insertion of alkyne into ReC bond to give a rhenabenzene intermediate, and collapse of the latter to 2. Complexes 1a and 1d undergo rearrangement in MeCN at reflux temperature to give rhenafuran-like products, (CO)4Re(κ2-OC(OMe)C(CHCR2)C(OEt)) (R=H (3a) or Et (3b)). The reaction of 1d also proceeds in EtCN, PhCN, and t-BuCN at comparable temperature, but is slower (especially in t-BuCN) than in MeCN. In pyridine at reflux temperature, 1a undergoes a similar rearrangement, with CO substitution, to give (CO)3(py)Re(κ2-OC(OMe)C(CHCEt2)C(OEt)) (4). A mechanism is proposed for these reactions. The sulfonium ylides Me2SCHC(O)Ph and Me2SC(CN)2 (Me2SCRR) react with 1a in acetonitrile at reflux temperature by nucleophilic addition of the ylide to the ReC(Me) carbon, loss of Me2S, and rearrangement to a rhenafuran-type structure to yield (CO)4Re(κ2-OC(OMe)C(C(Me)CRR)C(OEt)) (R=H, R=C(O)Ph (5a); R=RCN (5b)). All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号