首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of Cu(II), Ni(II), and Co(II) complexes have been synthesized from 3-formylchromoniminopropylsilatrane (C19H24O5N2Si) (2) and 3-formylchromoniminopropyltriethoxysilane (1). Silatrane ligand (C19H24O5N2Si) (2) has been synthesized by the reaction between 3-aminopropyltriethoxysilane and 3-formylchromone followed by a treatment with triethanolamine. The nature of bonding and the geometry of the complexes have been deduced from elemental analyses, magnetic susceptibility, infrared, electronic, 1H NMR, 13C NMR, and ESR spectral studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square planar geometry for Cu(II) and Ni(II) and tetrahedral geometry for Co(II). The redox behavior of copper complexes was studied by cyclic voltammetry. The biological activity of the ligand and metal complexes has been studied on Klebsiella pneumoniae, Staphylococcus aureus, Escherichia Coli, and Bacillus subtilis by the well diffusion method using acetonitrile as solvent. The zone of inhibition values were measured at 37°C for 24 h. Antimicrobial screening tests show better results for the metal complexes than the ligand.  相似文献   

2.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

3.
A bidentate iminophenol (HL = 2-((4-methoxyphenylimino)methyl)-4,6-di-tert-butylphenol derived from condensation of 4-methoxyaniline and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) was mixed with divalent metal salts to form the corresponding mononuclear metal complexes [MII(L)2] (M = Co (1), Cu (2), and Zn (3)). The complexes are characterized by different spectroscopic and analytical tools. X-ray crystal structures of the complexes revealed homoleptic mononuclear complexes with MN2O2 coordination. The cobalt(II) (1) and zinc(II) (3) complexes display a pseudo-tetrahedral coordination geometry, whereas the copper(II) complex (2) exhibits a distorted square-planar coordination. The zinc(II) complex (3) emits at 460 nm with a twofold enhancement of emission with respect to the free iminophenol.  相似文献   

4.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of o-phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.  相似文献   

5.
Primary phosphine complexes of transition metals have been synthesized from salicylaldiminopropylphosphine. The complexes were characterized by elemental analysis, infrared, electronic, 1H NMR, 31P NMR spectra, magnetic susceptibility, and conductivity measurements. The studies indicate square planar geometry for copper, cobalt, and nickel complexes. The EPR spectra of copper complex in acetonitrile at 300 and 77 K were recorded. The biological activities of the ligand and metal complexes have been studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus by the well-diffusion method. The zone of inhibition values were measured at 37°C for 24 h. The electrochemical behavior of copper complexes was studied by cyclic voltammetry. The copper(II) complex oxidizes cinnamaldehyde using hydrogen peroxide as oxidant.  相似文献   

6.
Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV–Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.  相似文献   

7.
Summary Binuclear copper(II) complexes with six 5-nitrosalicylaldehyde N(3)-substituted thiosemicarbazones have been prepared and characterized. I.r., electronic and e.s.r. spectra of the complexes, as well as i.r., electronic, and 1H-and 13C-n.m.r. spectra of the thiosemicarbazones, have been obtained. The crystal structure of a monomeric copper(II) complex of 5-nitrosalicylaldehyde piperidyl-thiosemicarbazone, H25NO2Sapip, grown from DMF solution, has been solved. Neither the thiosemicarbazones or their binuclear copper(II) complexes show growth inhibitory activity against Aspergillus niger, but the copper(II) complexes show some activity against the fungus Paecilomyces variotii.  相似文献   

8.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

9.
Ni(II), Cu(II), and Co(II) complexes, ML2, with a new thioether containing ONS donors were synthesized, where L = deprotonated Schiff base. The analytical, spectral (FTIR, 1H NMR, and UV-vis), conductivity, and magnetic studies show that the metal complexes possess octahedral geometry and are non-electrolytes. The coordination mode of ligand, 1, and nickel(II) complex, NiL2, 2, was determined by single-crystal X-ray diffraction studies. Here, the nickel is coordinated to two oxygens, two nitrogens, and two sulfurs of two tridentate ligands with slightly distorted octahedral environment around nickel. The copper complex shows very good catalytic activities towards oxidation of organic thioethers to the corresponding sulfoxide predominantly using H2O2 as the oxidant.  相似文献   

10.
New complexes, [Fe(L)Cl], [Ni(L)], and [Zn(L)C2H5OH] (1–3), were synthesized by template reaction of 2-hydroxy-acetophenone-S-methyl-thiosemicarbazone with 2-hydroxy-benzaldehyde. The compounds were characterized by elemental analysis, magnetic measurements, FT-IR, 1H NMR, UV–visible, and ESI–MS spectra. In these complexes, the ligand is coordinated to the metal ion as dinegatively charged tetradentate chelating agents via the N2O2 donor set. The iron(III) and zinc(II) complexes exhibit square pyramidal geometry whereas the nickel(II) complex has a square planar geometry. The crystal structure of 1, determined by X-ray diffraction method, indicates that 1 crystallizes in the monoclinic space group P21/c with Z = 4. Thermal decompositions of the compounds have been investigated using TGA in air.  相似文献   

11.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

12.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

13.
《Journal of Coordination Chemistry》2012,65(16-18):2776-2786
Abstract

Cu(II), Pt(II), and Zn(II) complexes of N-methyl-1-phenyldithiocarbamate were synthesized and characterized by FTIR, NMR, UV-visible spectroscopy and elemental analysis. The complexes were formulated as [Cu(L)2], [Zn(L)2] and [Pt(L)2] (where L?=?N-methyl-1-phenyldithio­carbamate) in which two molecules of the ligands coordinate to the metal ions in a bidentate chelating fashion. This is confirmed by elemental analysis and the presence of strong single bands at 952, 951, and 955?cm?1 for Cu(II), Pt(II), and Zn(II) complexes, respectively, in the FTIR spectra. The electronic spectra of Pt(II) and Cu(II) complexes are consistent with four-coordinate square planar geometry. Single crystal X-ray of [Cu(N-mpDTC)2] confirmed square planar structural arrangement (CuS4) in which the ligands are asymmetrically bonded to the Cu(II) ion building a centrosymmetric monomer entity. The S-Cu-S bite angle is 77.95° (3) whereas the intramolecular N–C bond length is 1.318 Å and trans S11-Cu-S1?=?S21-Cu-S2 is 180°, which are consistent with reported copper thiolates in square planar environment. In vitro antiproliferative activity of the complexes against three human cancer cell lines showed that the zinc complex has better activity compared to Cu and Pt complexes, with IC50 values of 14.28, 22.74 and 20.10?μM against TK10, UACC62, and MC7 cell lines, respectively.  相似文献   

14.
Tridentate chelate complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 4-[N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl)]aminoantipyrine. Microanalytical data, UV-Vis, magnetic susceptibility, Infrared, 1H- 13C-NMR, mass, thermal gravimetric analysis and electron paramagnetic resonance (EPR) techniques were used to confirm the structures. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted octahedral geometry for the metal. EPR spectra of the copper(II) complex at 77?K confirm the distorted octahedral geometry of the copper(II) complex. The antimicrobial activities of the ligand and metal complexes against the bacteria such as Xanthomonas maltophilia, Chromobacterium violaceum, Acinetobacter, Staphylococci, Streptococci, and the fungus Candida albicans have been carried out. A comparative study of minimum inhibitory concentration values of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial and antifungal activity than the free ligand. The electrochemical behavior of copper(II) complex was studied by cyclic voltammetry. The complexes show nuclease activity in the presence of oxidant.  相似文献   

15.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Co(II) and Zn(II) have been synthesised using the Schiff base formed by the condensation of acetylacetone andp-anisidine. Microanalysis, molar conductance, magnetic susceptibility, IR, UV-Vis,1 H NMR, CV and EPR studies have been carried out to determine the structure of the complexes. From the data, it is found that all the complexes possess square-planar geometry. The EPR spectrum of the copper complex in DMSO at 300 K and 77 K was recorded and its salient features are reported. All the title complexes were screened for antimicrobial activity by the well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values were calculated at 37°C for a period of 24 h. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand.  相似文献   

16.
Under the thermolysis condition, 5-phenyl-2,3-dihydro-2,3-furandione (IV) in inert aprotic solvents as p-xylene at 130–140°C yields 3-benzoyl-4-hydroxy-6-phenyl-2H-pyran-2-one (VI) via phenyl ketene (V). The compound (VI) was converted into the corresponding 3-benzoyl-4-hydroxy-6-phenylpyridin-2(1H)-one (VII), and 3-benzoyl-2-oxo-6-phenyl-2H-pyran-4-yl acetate (VIII), by its reactions with ammonium hydroxyde, and acetic anhydride, respectively. On the other hand, a series of new various metal complexes (IX-XIa, XIb) of VI was synthesized. The results suggest that the compound VI as bidentate ligand indicate a binuclear structure for the Cu(II) complex with square-planar geometry. The Ni(II) and Zn(II) complexes are of tetrahedral and the Co(II) complex is also octahedral geometry with water molecules at the axial positions. The structures of compounds and complexes were characterized on the basis of elemental analysis, Mass, IR, 1H, and 13C NMR spectra. The text was submitted by the authors in English.  相似文献   

17.
Binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes of general composition [M2L1-2(μ-Cl)Cl2] · nH2O with the Schiff-base ligands (where L1H and L2H are the potential pentadentate ligands derived by condensing 2,6-diformyl-4-methylphenol with 4-amino-3-antipyrine and 2-hydroxy-3-hydrazinoquinoxiline, respectively) have been synthesized and characterized. Analytical and spectral studies support the above formulation. 1H-NMR and IR spectra of the complexes suggest they have an endogenous phenoxide bridge, with chloride as the exogenous bridge atom. The electronic spectra of all the complexes are well characterized by broad d–d and a high intensity charge-transfer transitions. The complexes are chloro-bridged as evidenced by two intense far-IR bands centered around 270–280 cm−1. Magnetic susceptibility measurements show that complexes are antiferromagnetic in nature. The compounds show significant growth inhibitory activity against fungi Aspergillus niger and Candida albicans and moderate activity against bacteria Bacillus cirroflagellosus and Pseudomonas auresenosa.  相似文献   

18.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

19.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

20.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号