首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes [Ag4(dpe)4]·(btec) (1) and [Ag4(bpy)4]·(btec)·12H2O (2) (dpe = 1,2-di(4-pyridyl)ethylene, bpy = 4,4′-bipyridine, H4btec = 1,2,4,5-benzenetetracarboxylic acid) have been synthesized in aqueous alcohol/ammonia by slow evaporation at room temperature and characterized by elemental analysis, single-crystal X-ray diffraction, FTIR, UV–Vis and luminescence spectroscopies. Both complexes are composed of 1D infinite cationic [Ag/dpe(bpy)] n n+ chains and discrete btec4? anions. Their three-dimensional supramolecular structures are built up of cationic sheets formed from [Ag/dpe(bpy)] n n+ units via weak Ag…Ag and Ag…N interactions, plus anionic btec4? sheets featuring electrostatic, ππ and hydrogen bonding interactions. Both complexes exhibited photocatalytic activity for the decomposition of methyl orange under UV light irradiation.  相似文献   

2.
Six transition metal coordination compounds with H2mand and different N-donor ligands, [Co(Hmand)2(2,2′-bipy)]·H2O (1), [Ni(Hmand)2(2,2′-bipy)]·H2O (2), [Ni(Hmand)2(bpe)] (3), [Zn(Hmand)2(2,4′-bipy)(H2O)]·2H2O (4), [Zn(Hmand)(bpe)(H2O)]n[(ClO4)]n·nH2O (5), and [Zn(Hmand)(4,4′-bipy)(H2O)]n[(ClO4)]n (6), were synthesized under different conditions (H2mand = (S)-(+)-mandelic acid, bpe = 1,2-di(4-pyridyl)ethane, 4,4′-bipy = 4,4′-bipyridine, 2,4′-bipy = 2,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine). Their structures were determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, infrared spectra, thermogravimetric analysis, powder X-ray diffraction, and circular dichroism. Compounds 1 and 2 are isostructural (0-D structures), which are extended to supramolecular 1-D chains by hydrogen bonding. Compound 3 exhibits 1-D straight chain structures, which are further linked via hydrogen bond interactions to generate a 3-D supramolecular architecture. Compound 4 displays a discrete molecular unit. Neighboring units are further linked by hydrogen bonds and ππ interactions to form a 3-D supramolecular architecture. Compound 5 displays a 2-D undulated network, further extended into a 3-D supramolecular architecture through hydrogen bond interactions. Compound 6 possesses a 2-D sheet structure. Auxiliary ligands and counteranions play an important role in the formation of final frameworks, and the hydrogen-bonding interactions and ππ stacking interactions contributed to the formation of the diverse supramolecular architectures. Compounds 1, 2, 4, 5, and 6 crystallize in chiral space groups, with the circular dichroism spectra exhibiting positive cotton effects. Furthermore, the luminescent properties of 46 have been examined in the solid state at room temperature, and the different crystal structures influence emission spectra significantly.  相似文献   

3.
Two metal-organic coordination polymers, [Co(tda)(ip)(H2O)2] n (1) and [Mn(tda)(ip)(H2O)] n (2) [H2tda?=?thiophene-2,5-dicarboxylic acid, ip?=?1H-imidazo[4,5-f][1,10]-phenanthroline], have been synthesized and characterized by elemental analyses, IR, PXRD, and X-ray diffraction. Single-crystal X-ray analyses reveal that 2,5-tda is a bridging ligand, exhibiting two coordination modes to link metal ions: μ11?:?η011?:?η0 and μ21?:?η111?:?η0. Compound 1 demonstrates a 1-D structure in which Co2+ centers are connected via tda anions into 1-D chains; the chains are further connected via hydrogen-bonding and π?···?π interactions. Compound 2 displays a 2-D structure in which tda connects two Mn ions forming a dinuclear molecule. In 2 the 3-D supramolecular structure arrays through hydrogen-bonding and π?···?π interactions. In addition, photoluminescence for 1 and 2 is also investigated in the solid state at room temperature.  相似文献   

4.
From 1-D to 3-D zinc coordination polymers based on multifunctional flexible 4-(1,2,4-triazole-methylene)-benzonitrile (tzbt), {[Zn(tzbt)2(bdc)]·2H2O}n (1), [Zn(tzbc)2]n (2), and [Zn(bpdc)(H2O)]n (3) (bdc = 1,4-benzenedicarboxylic acid, tzbc = 4-(1,2,4-triazole-methylene)-benzoic acid, bpdc = 4,4′-biphenyldicarboxylic acid), were synthesized under hydrothermal conditions. The tzbt was synthesized by N-alkylation and hydrolyzed in situ to produce tzbc (in 2). Single-crystal X-ray diffraction analysis reveals that 1 displays 1-D wave-like chains based on [Zn(bdc)]n. 2 is a chiral twofold interpenetrating 2-D architecture constructed with “V”-shaped tzbc. 3 is a 3-D chiral compound constructed from achiral H2bpdc with right-handed helical chains. 1–3 display stable blue-emitting luminescence with emission maxima ranging from 383 to 410 nm, depending on ligand-centered π*→π transitions. The effects of different polarity solvents and temperature on luminescence are discussed. TGA and VT-XPRD reveal that 2 has thermal stability to 360 °C.  相似文献   

5.
Four binary compounds, [Zn(cpa)(H2O)3] (1), [Co(cpa)(H2O)3] (2), [Zn(cpa)(H2O)]n, (3) and [Co(cpa)(H2O)]n (4) (H2cpa = (2-carboxyphenoxy)acetic acid), have been synthesized and structurally characterized. In mononuclear 1 or 2, the metal ion (ZnII for 1 and CoII for 2) is surrounded by three water molecules and one tridentate chelate cpa2? in a distorted octahedral geometry, while in 3 or 4, the central metal ion (ZnII for 3 and CoII for 4) is located in a deformed square–pyramid formed by one water and two cpa2?. Each cpa2? is chelate bridging μ2 coordination and forms a 1-D zigzag chain structure 2 or 3. The different synthesis conditions for 14 have been carefully discussed. The solid-state fluorescence measurements for 1 and 3 together with magnetic properties for 4 also have been investigated.  相似文献   

6.
Reactions of Zn(II) salts, 5-(4-(1H-imidazol-1-yl)phenyl)-1H-tetrazolate (HIPT) and 2-mercaptobenzoic acid or 2-propyl-1H-imidazole-4,5-dicarboxylic acid (H3PrIDC), result in two mixed-ligand coordination polymers (CPs), [Zn2(IPT)(DSDB)(OH)]n (H2DSDB = 2,2′-disulfanediyldibenzoic acid, 1) and [Zn2(IPT)(PrIDC)(H2O)]n (H3PrIDC = 2-propyl-1H-imidazole-4,5-dicarboxylic acid, 2). Compound 1 possesses a 2-D structure built by 1-D [Zn(IPT)]n chains and DSDB2? connectors, in which the DSDB2? is generated via in situ reaction from 2-mercaptobenzoic acid. It displays a new intricate 4-nodal {3·4·6·7·8·9}{3·6·7·8·9·10}{3·8·9}{4·6·8} topology. Compound 2 displays a 3-D framework with new 3-connected topology with Schläfli symbol of (4·8·10) (8·122), in which the 1-D Zn-carboxylate chains were bridged by 3-connected IPT? ligands. The thermal stabilities and luminescence properties of 1 and 2 have also been studied. The compounds exhibit intense solid-state fluorescent emissions at room temperature.  相似文献   

7.
Two dinuclear Fe(III) metal–organic complexes with tetracarboxylate and chelating N-donor ligands, [Fe(Hbtec)(phen)(H2O)]2·2H2O (1) and [Fe(Hbtec)(bpy)(H2O)]2·2H2O (2) (H4btec = 1,2,3,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by elemental analysis, IR spectroscopic, and X-ray diffraction methods. Both complexes crystallize in the monoclinic space group P21/c with two Fe(III) ions bridged by two Hbtec3? ligands into a dinuclear unit. Hydrogen bonding connects the dinuclear units into a 3-D framework. The dinuclear units are 10-connected nodes that produce a 3-D framework with topology Schläfli symbol as (312·428·55). Thermal stabilities and luminescent properties of the two complexes have also been investigated.  相似文献   

8.
{[Zn2(tdba)2(phen)2(H2O)2]?·?2H2O?·?2DMF} n (1) and [Zn(tdba)(bpy)] n (2) (H2tdba?=?2,2′-thiodibenzoic acid, phen?=?1,10-phenanthroline, bpy?=?2,2′-bipyridine, DMF?=?dimethylformamide) were hydrothermally synthesized, and characterized by single-crystal X-ray diffraction analysis, FT-IR, and elemental analysis. The obtained complexes exhibit different structures. Compound 1 is 0-D with tdba connecting two Zn ions in a μ 1η 1/μ 1η 1 coordination forming a dinuclear molecule. Each molecule is further connected with neighbors via hydrogen-bonding and π?···?π interactions. Compound 2 displays a 1-D structure in which Zn2+ centers are connected via tdba anions into 1-D chains propagating along the a-axis; these chains are further packed via π?···?π interactions. In addition, photoluminescence for 1 and 2 has been investigated.  相似文献   

9.
Two 1-D and 3-D Ag(I) complexes involving 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid (H3PIDC) have been characterized by infrared spectrum, elemental analysis, and single-crystal X-ray diffraction. [Ag2(HPIDC)]n (1), synthesized under hydrothermal conditions, gave a 3-D framework; [Ag2(HPIDC)(MBI)]n (2) (MBI?=?2-methyl-1H-benzo[d]imidazole), with MBI as the second ligand, gave a 1-D zigzag chain and further formed a 3-D supramolecular structure through π···π interactions. The most interesting structural features of these complexes are the presence of C–H···Ag hydrogen bonding interactions and Ag···C weak interactions between the Ag centers and H3PIDC. Luminescence indicates that 2 has significantly stronger fluorescent emissions than 1 in the solid state at room temperature.  相似文献   

10.
Three new Cd(II) complexes incorporating both 2-(1H-imidazol-1-methyl)-1H-benzimidazole (imb) and 1,4-benzenedicarboxylate (bdic2?), [CdCl(bdic)1/2(imb)2]n (1), {[Cd(bdic)(imb)(H2O)]·DMF·2H2O}n (2), and [Cd(bdic)(imb)]·3H2O}n (3), have been prepared and structurally characterized by single crystal X-ray diffraction. Bdic2? anions connect the?Cd-imb-Cd-imb?chains leading to a 2-D structure of 1. Bdic2?(A) and bdic2?(B) anions link the binuclear [Cd2(imb)2(H2O)2] units forming a 2-D structure of 2. Complex 3 features a 2-D structure involving supramolecular “double-layer” motifs. IR spectra and thermogravimetric curves are consistent with the results of the X-ray crystal structure analysis; 13 exhibit good fluorescence in the solid state at room temperature.  相似文献   

11.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

12.
Zinc(II) coordination polymers, [Zn(Hmal)(im)(H2O)] n · 2nH2O (1) and [Zn(Hmal)(bpy)] n · 3nH2O (2) (H3mal = malic acid, im = imidazole, bpy = 2,2′-bipyridine), were synthesized from aqueous solution and characterized by elemental analyses, infrared and fluorescence spectra, thermogravimetric analyses, and single-crystal X-ray structural analyses. In 1, zinc is coordinated by imidazole, water, and tridentate malate in octahedral geometry. The β-carboxy group of malate further bridges with the other zinc forming 1-D polymeric chains. A pair of 1-D chains self-assemble to generate a double chain by strong hydrogen bonds between imidazole and malate. Furthermore, neighboring pairs of double chains are extended to form the final 3-D framework through intermolecular hydrogen bonds. In 2, the malates link Zn in a bidentate–monodentate fashion to form spiral-shaped chains that extend into a 3-D supramolecular structure by π–π stacking interactions and intermolecular hydrogen bonds. Complex 1 exhibits strong fluorescence at room temperature.  相似文献   

13.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

14.
Four Cu(II)/Co(II) coordination polymers, [Cu(L)(BDC)(H2O)]·3H2O (1), [Cu(L)(DNBA)2] (2), [Co(L)2(DNBA)2] (3), and [Co(L)(NIPH)(H2O)]·H2O (4) (H2BDC = 1,4-benzenedicarboxylic acid, HDNBA = 3,5-dinitrobenzoic acid, H2NIPH = 5-nitroisophthalic acid, L = N,N′-di(3-pyridyl)sebacicdiamide), have been synthesized under hydrothermal conditions. The structures of 14 have been determined by single-crystal X-ray diffraction analyses and 14 were further characterized by infrared spectroscopy and thermogravimetric analyses. Complex 1 is a 2-D polymeric layer with a 4-connected sql topology. Complex 2 displays a 1-D zigzag chain. Complex 3 possesses a 1-D double-chain structure. Complex 4 exhibits a ribbon chain based on the 1-D [Co–L]nmeso-helical chain. Adjacent layers for 1 and adjacent chains for 24 are further linked by hydrogen bonding or ππ stacking interactions to form 3-D supramolecular networks. The differences of carboxylates and metal ions show significant effect on the ultimate architectures of the four complexes. Thermal stabilities, fluorescent properties and photocatalytic activities of 14 were also studied.  相似文献   

15.
A new coordination framework, [Co2(L)2(bpy)2(H2O)]n (1) (H2L = (4-phenyl)-2,6-bis(4-carboxyphenyl)pyridine and bpy = 2,2′-bipyridine), has been prepared and structurally characterized. Complex 1 shows an interesting bi-chain substructure bridged by coordinated water molecules, which is further extended into a three-dimensional (3-D) supramolecular structure by ππ stacking interactions. Moreover, the magnetic properties and photocatalytic activity for degradation of methyl orange have been investigated.  相似文献   

16.
Reactions of cadmium(II) with 5-(4-carboxybenzylamino)isophthalic acid (H3L) in the presence of 2-(pyridin-2-yl)-1H-benzo[d]imidazole (pybim) and 2,2′-bipyridine (bpy) by hydrothermal method lead to two complexes, [Cd(HL)(pybim)]·H2O (1) and [Cd2(L)(HCOO)(bpy)2(H2O)]·H2O (2). Complexes 1 and 2 have been characterized by single-crystal and powder X-ray diffraction, Infrared spectra, and elemental and thermogravimetric analyses. 1 has a double-chain structure while 2 consists of uninodal 3-connected 2-D hcb networks with (63) topology. Luminescence and sorption properties of 1 and 2 were also investigated.  相似文献   

17.
Two pairs of isostructural transition metal coordination polymers, {[Co(L)(H2O)]n} (1) and {[Zn(L)(H2O)]n} (3), {[Co(L)(4,4′-bipy)(H2O)]·H2O}n (2) and {[Zn(L)(4,4′-bipy)(H2O)]·H2O}n (4) (H2L = N-pyrazinesulfonyl-glycine acid and 4,4′-bipy = 4,4′-bipyridine), have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analyses. The structures show that 1 and 3 display 2-D polymeric grid frameworks with a 3-connected (4, 82) topology. 2 and 4 also exhibit a 2-D polymeric grid structure, but are constructed by a 4-connected (4, 4) topology. The adjacent 2-D polymeric grid frameworks for 1–4 are further linked by hydrogen bonding O–H?O interactions to form 3-D supramolecular interweaved orderly networks. The fluorescent properties of 3 and 4 were investigated in the solid state.  相似文献   

18.
Two new hybrid compounds, [Cu(1)(phen)(H2O)][Cu(2)(phen)(H2O)]([Cu(3)]0.25(H2O)][P2Mo5O23]·3.75H2O (1) and [Cu(en)2]1.5[P2Mo5O23]2·(enH2)3·2H2O (2) (phen = 1,10-phenanthroline, en = ethylenediamine), have been hydrothermally synthesized and characterized by IR, UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), powder XRD analyses, TG analyses, cyclic voltammogram analyses, elemental analyses, and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analyses reveal that the two compounds have a 1-D chain structure formed by Strandberg-type POMs and TMCs with –A–B–C–B–A–B–C–B– linking mode, then further extend into a 2-D layer structure through π?π or hydrogen bond interactions.  相似文献   

19.
Three new metal coordination polymers constructed from adipic acid and 2-(pyridin-3-yl)-(1H)-benzimidazole ligands, [M(ADP)(3PBI)2(H2O)2]·2H2O (M = Ni and Co for 1 and 2, respectively) and [Cd(ADP)(3PBI)(H2O)] (3) [ADP = adipic acid dianion; 3PBI = 2-(pyridin-3-yl)-(1H)-benzimidazole], have been synthesized by hydrothermal reactions and were characterized by X-ray single-crystal diffraction, elemental analyses, IR, powder X-ray diffraction, and thermogravimetry. Complexes 1 and 2 are isostructural. Both form a 1-D linear chain structure, which is further assembled into a 3-D supramolecular framework by π?π stacking and hydrogen bonding interactions. Complex 3 possesses a binuclear unit and displays a 2-D layer which is further extended to a 3-D supramolecular architecture via hydrogen bonding and other weak packing interactions. The luminescent properties of 3 were investigated in the solid state at room temperature.  相似文献   

20.
In aqueous methanolic solution, reactions of CuCl2, m-hydroxybenzoic acid (HL), and NaOH with 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) at room temperature afforded {[Cu(bpy)L](µ2?Cl)(µ2?L)[Cu(bpy)L]}?1.2H2O (1) and {[Cu(phen)Cl](µ2?Cl)(µ2?L)[Cu(phen)L]} (2) with chloro- and carboxylato-bridged dinuclear [Cu(µ2?Cl)(µ2?COO)Cu] cores. The Cu2 dimers in 1 are pairwise aggregated to form H-bonded tetranuclear motifs, which are extended by H2O into 1-D H-bonded chains and further assembled into 2-D supramolecular networks. The Cu2 dimers in 2 are also linked into 1-D H-bonded chains and further assembled into 2-D supramolecular layers. Magnetic measurements indicate that significant antiferromagnetic interactions (J = ?15.9, ?12.2 cm?1) between Cu2+ ions are dominant in these dinuclear [Cu(µ2?Cl)(µ2?COO)Cu] cores. To the best of our knowledge, 2, crystallizing in the acentric polar orthorhombic space group Pna21, represents the first example of metal m-hydroxybenzoato complexes with ferroelectric properties with a remnant polarization (Pr) of ca. 0.04?µC cm?2, coercive field (Ec) of ca. 2.52 kV cm?1, and saturation of the spontaneous polarization (Ps) at ca. 0.195?µC cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号