首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract

2-(2′-Pyridyl)benzimidazole (pybzim = LH) coordinates to iron(II) as a bidentate and forms the tris-ligated complex, [Fe(pybzim)3]2+ as isolated in the solid. Titration of [Fe(pybzim)3]2+ with base demonstrates the successive deprotonation of the imino hydrogens of the coordinated ligands. Protonation constants for the free ligand, pybzim (Iog10 K H = 11.33) and the complex, [Fe(pybzim)3]2+ (log10 K H 1 = 9.58, log10 K H 2 = 8.13 and log10 K H 3 = 6.97) were measured in 30% (v/v) H2O/EtOH. Results show that coordination to iron(II) increases the acidity of the imino hydrogen of the ligand. Spin-crossover behaviour of the complex were studied in different solvents ME, AC, AN, NM, NB, DMF, DMSO and ANL. The complex shows strong spin-crossover behaviour which is solvent dependent. Values of the spin-equilibrium constant (K sc) and the associated thermodynamic parameters (ΔH sc = 18.1–21.3 kJ mol?1 and δS sc = 69.6–84.4JK?1 mol?1) were calculated. An increase of the enthalpy is observed with increasing donor number (DN) of the solvent.  相似文献   

2.
The kinetics of base hydrolysis of the low-spin iron(II)-diimine complex [Fe(fertri)3]2+, where fertri=3-(2-pyridyl)-5,6-bis(2-furyl)-1,2,4-triazine, as a function of hydroxide concentration, solvent composition (water; aqueous MeOH), and pressure are reported. Rate constants are also reported for dissociation of the [Fe(fertri)3]2+ cation in 50–64% MeOH, determined from replacement of the fertri ligands by 1,10-phenanthroline. The reactivity of this fertri complex is compared with reactivities of a selection of other iron(II)-diimine complexes and, where possible, their ligand-sulfonated derivatives. The activation volume for base hydrolysis of [Fe(fertri)3]2+ is +10.7 cm3 mol−1, in 40% MeOH.  相似文献   

3.
The substitution of bis(2,4,6-tripyridyl 1,3,5-triazine)iron(II), \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} by 2,2′,6,2″-terpyridine (terpy) occurs on a time scale of about 6 m. The kinetics of this reaction was followed by stopped-flow spectrophotometry in the pH range of 3.6–5.6 in acetate buffer. The data indicate that the reaction occurs in two consecutive steps: kinetic data for both steps were acquired simultaneously and analyzed independently. The first step is assigned to the reaction between \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} and terpy to give Fe(TPTZ)(terpy)2+, followed by its reaction with another terpy molecule to give the final product, \textFe(terpy) 2 2 + {\text{Fe(terpy)}}_{ 2}^{{ 2 { + }}} . The rate of the reaction increases with increases in [terpy] and pH. The kinetic and activation parameters determined for both steps suggest that they involve both associative and dissociative paths. The ternary complex Fe(TPTZ)(terpy)2+ has been prepared, and the kinetics of its reaction with terpy suggest that this reaction is identical with the second step of the \textFe(TPTZ) 2 2 + {\text{Fe(TPTZ)}}_{ 2}^{{ 2 { + }}} -terpy system, supporting the proposed mechanism.  相似文献   

4.
Abstract

1-Hexadecyl-1,4,8,11-tetraazacyclotetradecane (hexadecyl cyclam) and 1-(3,7,11,15-tetramethyl) hexadecyl-1,4,8,11-tetraazacyclotetradecane (tetramethylhexadecyl cyclam) have been synthesized and their deprotonation and ligand-metal formation constants, K, determined for Cu(II), Zn(II) and Pb(II). The coupling of a long hydrocarbon chain to a ring nitrogen decreased the general ability of the cyclam ring to complex with metal ions. The greatest effect appeared to be for Cu(II) decreasing from a pK of 27 for cyclam to about 17. The titrations were fitted by HYPERQUAD and the concentrations of the intermediate complexes obtained as a function of pH. Metal-ligand complexes LMH2 4+, LMH2+ and LM2+ can coexist through a wide pH range. We have also calculated a composite metal-binding constant, K′, to reflect more accurately the overall ability of these ligands to bind a metal at any particular pH. K′, which is 14.6 for (hexadecyl cyclam)-Cu(II), is constructed from the concentrations of all the metal-chelated species at pH = 7. Generally, K′ is much lower than K.  相似文献   

5.
Abstract

The synthesis and properties of new cationic iron(II) complexes of general formula [(η5-C5H5)FeL(η2-dppa)]A [A=I?, L = CO(1); A = BF4, L = CO(2) CH3CN(4), η1-dppa(5); dppa = NH(PPh2)2] are described. The carbonyl complex [(η5-C5H5)Fe(CO)(η2-dppa)]BF4 is deprotonated to give the neutral complex [(η5-C5H5)Fe(CO){η2-(PPh2)2N}](3). All complexes have been characterized by elemental analysis and IR and NMR spectroscopies. Cyclic voltammetry of complexes 1–5 shows a diverse redox chemistry in acetonitrile solution. While the reduction of 1 and 2 leads to the formation of a dinuclear Fe(I) complex, 4 and 5 form mononuclear species of Fe(I); oxidation of metal centers of 1 and 2 is not observed and in complexes 3 and 4 the metal centers are oxidized at potentials < 1. Complex 5 in acetonitrile solution is transformed into complex 4.  相似文献   

6.
Abstract

The preparation and properties of new complexes containing the biometals Fe(III), Co(II) and Ni(II) coordinated to the anti-inflammatory drug Suprofen are reported. The elemental analyses, together with the magnetic and thermal behavior and electronic, IR and Raman spectra, indicated the following stoichiometries for the latter two complexes: [M(Sup)2(H2O)4]. For the Fe(III) complex, the generation of a dinuclear species may be proposed on the basis of 57Fe Mössbauer measurements.  相似文献   

7.
Abstract

The ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ (where M is the same and M = FeII or NiII, phen = 1,10-phenanthroline, DIP = 4,7-diphenyl-1,10-phenanthroline) has been investigated by reversed phase ion-paired chromatography (RP-IPC). The effect of pH and solvent on the ligand-exchange reaction is studied by monitoring the variation in chromatograms with time after mixing. The results have shown that the ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ takes place in the pH range of 3–8 and the rate of reaction for nickel(II) complexes is about two times slower than that for iron(II) complexes. Experiments on the effect of various solvents on the ligand-exchange reaction have revealed that the rate of reaction is enhanced by the solvent in the following order: (CH3)2CO > CHCl3 ≥ CH2Cl2 > CH3CN > CH3OH. Elemental analysis and UV-visible spectroscopy confirmed that the products obtained from the ligand-exchange reaction are mixed-ligand complexes containing phen and DIP ligands, i.e., [M(phen)2(DIP)]2+ and [M(phen)(DIP)2]2+.  相似文献   

8.
The interaction of zinc(II), lead(II), and cadmium(II) with Glutathione (S‐L‐glutamyl‐Lcysteinylglycine) as primary ligand and zwitterionic buffers (N‐[2‐Hydroxyethyl]piperazine‐N′‐[2‐ethanesulfonic acid]) (HEPES) and (N‐Hydroxyethyl]piperazine‐N′‐[2‐hydroxy‐propanesulfonic acid]) (HEPPSO) as secondary ligands were studied by potentiometric‐pH titration in 1:1:1 ratio at 25.0 °C and I = 0.1 mol.dm?3 (KNO3). The formation constants of different normal and protonated binary and ternary complex species were calculated. Formation constants for the monohydroxy, and dihydroxy complexes for the binary systems M(II) + HEPES and M(II) + HEPPSO have been evaluated. The distribution curves for the various complex species as a function of pH were constructed.  相似文献   

9.
The synthesis, separation, and characterization of mixed-ligand iron(II) complexes containing 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (pdon), and NCS? are reported. The mixed-ligand complexes [Fe(phen)(pdon)2]2+ and [Fe(phen)2(pdon)]2+ were prepared from iron(II) sulfate hepta hydrate and both ligands. The mixture of both complexes formed regardless the ratio of the ligands or the reaction time; therefore, the complexes were separated successfully on the reversed phase (RP) Develosil RP-Aqueous [C30] 5?µm, 150?×?4.6?mm column by two different methods. The first method was the ion paired RP chromatography performed under gradient elution with acetonitrile–water containing 0.001?mol?L?1 KPF6 aqueous as mobile phases. The second method was the RP chromatography performed under gradient elution with methanol and water as mobile phases. The gradient elution with water–methanol as eluents was preferred for the semi preparative separations allowing one to use the complexes without further purification upon separation, different than the first method and its variations so far. Three complexes (5, 6, and 7) were characterized by electrospray ionization mass spectrometry, NMR, UV-Vis, and IR.  相似文献   

10.
2,4,6-Tri(2′-pyridyl)-s-triazine (TPTZ) complexes with iron(II) and ruthenium(III) were prepared. Their sorption and desorption features on silica gel have been investigated. Both complexes were strongly adsorbed. This has been utilized for separating and preconcentrating iron(II) and ruthenium(III) using TPTZ-impregnated silica gel. The chromatographic behavior of TPTZ on silica gel column was examined and found to be effective modifier for silica gel surface. The sorption capacity of silica gel for those metal-triazine complexes has been determined under static conditions and was found to be 5.28 × 10–3 mM (Fe(TPTZ)22+) and 2.9 × 10–3 mM (Ru(TPTZ)23+). Saturated methanolic solutions of KI or 25% NaClO4 solutions desorbed both complexes quantitatively from the silica gel surface.  相似文献   

11.
We reported the synthesis of tris(pyridyl)phosphine selenide (TppSe) and tris(4-methylpyridin-2-yl)phosphine selenide (MeTppSe), which were prepared by a simple and straightforward one-pot method with red phosphorus in a KOH/DMSO suspension, and treatment of resulted phosphines with selenium in hot toluene. These compounds were characterized by mass spectroscopy, 1H, 13C and 31P NMR spectroscopies and the structure of MeTppSe was characterised by a single-crystal X-ray diffraction. Furthermore, The reactions of selenides with Fe(ClO4)2·6H2O afforded two new iron(II) mononuclear metal complexes [Fe(TppSe)2][ClO4]2·3DMF (1) and [Fe(MeTppSe)2][ClO4]2·2DMF (2). Detailed structural analyses and magnetic susceptibility measurements confirm no spin transition from low-spin to the high-spin state between 2 and 300 K in two iron(II) complexes.  相似文献   

12.
Abstract

The formation of two complexes by reaction of [PdCl4]2- with 1,2,3-triphenylguanidine (PhNH)2C=NPh under different metal/ligand ratios has been observed and the structure of the complex [(1,2,3-triphenylguanidine)2PdCl2] has been determined by X-ray diffraction methods. The ligands are coordinated as neutral monodentate molecules to the metal centre through their imine nitrogen atoms. The second Pd(II) complex is [Pd(1,2,3-triphenylguanidine)4]2+ and was isolated by precipitation with ClO? 4.  相似文献   

13.
[Bis(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PDT)2(bpy)]2+ (1), [bis(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)(2,2′-bipyridine)iron(II)], [Fe(PPDT)2(bpy)]2+ (2), [bis(2,2′-bipyridine)(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PDT)(bpy)2]2+ (3), and [bis(2,2′-bipyridine)(3-(4-phenyl-2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II)], [Fe(PPDT)(bpy)2]2+ (4) have been synthesized and characterized. Substitution of the triazine and bipyridine ligands from the complexes by nucleophiles (nu), namely 1,10-phenanthroline (phen) and 2,2′,6,2″-terpyridine (terpy) was studied in a sodium acetate-acetic acid buffer over the pH range 3–6 at 25, 35, and 45°C under pseudo-first order conditions. Reactions are first order in the concentration of complexes 14. The reaction rates increase with increasing [nu] and pH whereas ionic strength has no effect on the rate. Straight-line plots with positive slopes are observed when the kobs values are plotted against [nu] or 1/[H+]. The substitution reactions proceed by dissociative as well as associative paths and the latter path is predominant. Observed low Ea values and negative ΔS# values support the dominance of the associative path. Phenyl groups on the triazine ring modulate the reactivity of the complexes. The π-electron cloud on the phenyl rings stabilizes the charge on metal center by inductive donation of electrons toward the metal center, resulting in a decrease in reactivity of the complex and the order is 1 < 2 < 3 < 4. Density functional theory (DFT) calculations also support the interpretations drawn from the kinetic data.  相似文献   

14.
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO)2]SO4·H2O and [Cu(metSO)2]·H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.  相似文献   

15.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

16.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

17.
Four new u-oxamido heterobinuclear complexes have been synthesized and identified as [Cu(oxap)Fe(L)2]SO4, where oxap denotes the N, N'-bis(2-aminopropyl)oxamido dianion and L represents diaminoethane (en); 1,3-diaminopropane (pn); 1,2-diaminopropane (ap) and 2,9-dimethyl-1,10-phenanthroline (Me2-phen). Based on the elemental analyses, spectroscopic studies, magnetic moments (at room temperature) and molar conductivity measurements, extended oxamido-bridged structures consisting of a copper(Ⅱ) and an iron(Ⅱ) ions, which have a square planar environment and an octahedral environment, respectively, are proposed for these complexes. Complexes [Cu(oxap)Fe(en)2]SO4 (1) and [Cu(oxap)Fe(pn)2]SO4 (2) have been characterized by variable temperature magnetic susceptibility (4.2~300 K) and the observed data were least-squares fitted to the susceptibility equation derived from the spin Hamiltonian including single-ion zero-field interaction for the iron(Ⅱ) ion, H=-2JS1.S2-DSzl2, giving the exchange integrals J=-2  相似文献   

18.
Abstract

The kinetics and stability constants of l-tyrosine complexation with copper(II), cobalt(II) and nickel(II) have been studied in aqueous solution at 25° and ionic strength 0.1 M. The reactions are of the type M(HL)(3-n)+ n-1 + HL- ? M(HL)(2-n)+n(kn, forward rate constant; k-n, reverse rate constant); where M=Cu, Co or Ni, HL? refers to the anionic form of the ligand in which the hydroxyl group is protonated, and n=1 or 2. The stability constants (Kn=kn/k-n) of the mono and bis complexes of Cu2+, Co2+ and Ni2+ with l-tyrosine, determined by potentiometric pH titration are: Cu2+, log K1=7.90 ± 0.02, log K2=7.27 ± 0.03; Co2+, log K1=4.05 ± 0.02, log K2=3.78 ± 0.04; Ni2+, log K1=5.14 ± 0.02, log K2=4.41 ± 0.01. Kinetic measurements were made using the temperature-jump relaxation technique. The rate constants are: Cu2+, k1=(1.1 ± 0.1) × 109 M ?1 sec?1, k-1=(14 ± 3) sec?1, k2=(3.1 ± 0.6) × 108 M ?1 sec?1, k?2=(16 ± 4) sec?1; Co2+, k1=(1.3 ± 0.2) × 106 M ?1 sec?1, k-1=(1.1 ± 0.2) × 102 sec?1, k2=(1.5 ± 0.2) × 106 M ?1 sec?1, k-2=(2.5 ± 0.6) × 102 sec?1; Ni2+, k1=(1.4 ± 0.2) × 104 M ?1 sec?1, k-1=(0.10 ± 0.02) sec?1, k2=(2.4 ± 0.3) × 104 M ?1 sec?1, k-2=(0.94 ± 0.17) sec?1. It is concluded that l-tyrosine substitution reactions are normal. The presence of the phenyl hydroxyl group in l-tyrosine has no primary detectable influence on the forward rate constant, while its influence on the reverse rate constant is partially attributed to substituent effects on the basicity of the amine terminus.  相似文献   

19.
Abstract

The synthesis and characterization of three zinc(II) complexes [Zn(34-MBTSC)2Cl2] (1), [Zn(34-MBTSC)2Br2] (2), and [Zn(34-MBTSC)2I2] (3) of 3,4-dimethoxybenzaldehyde thiosemicarbazone (34-MBTSC) are reported. Elemental analysis (CHN) and spectral (FT-IR and 1H-NMR) measurements have been used to characterize the complexes. In addition, the structure of the complex 1 has been determined by X-ray diffraction methods. In these complexes, the zinc(II) ion is bonded to two thioketonic sulfur donors in η1-S bonding mode and to two halide ions in tetrahedral geometry.

Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfer, and Silicon and the Related Elements for the following free supplemental files: Additional figures.  相似文献   

20.
The reaction of the potassium salt of the N-(thio)phosphorylated thioureas AdNHC(S)NHP(O)(OiPr)2 (HLI , Ad = Adamantyl) and MeNHC(S)NHP(S)(OiPr)2 (HLII ) with Co(II) and Zn(II) in aqueous EtOH leads to [MLI,II 2] chelate complexes. They were investigated by UV-vis, 1H and 31P NMR spectroscopy, and microanalysis. The molecular structures of [MLI 2] were elucidated by single crystal X-ray diffraction analysis. The metal centers in both complexes are found to be in a distorted-tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated LI ligands. The photoluminescence properties of [ZnLII 2] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号