首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
{[Cu2(btm)2(Hbtc)(H2btc)2(H2O)]·9.5H2O}n (1), [Cu(bte)(H2btc)2]n (2) {[Cu(btp)(H2btc)2]·0.25H2O}n (3) (btm?=?bis(1,2,4-triazol-1-yl)methane, bte?=?bis(1,2,4-triazol-1-yl)ethane, btp?=?bis(1,2,4-triazol-1-yl)propane, H3btc?=?benzene-1, 3, 5-tricarboxylic acid) have been synthesized and structurally characterized. 1 features a 1-D double chain, which is interconnected by classical hydrogen-bonding (O–H?O) and ππ interactions to lead to a 3-D supramolecular architecture. 2 and 3 are both 1-D single chains, which are interconnected by ππ interactions to 2-D layer architectures. Elemental analysis, XRD, IR, TG and EPR spectra have been carried out and discussed.  相似文献   

2.
Three pillared polymeric complexes, {[Ni2(AIP)2(4,4′-bpt)(H2O)2]·4H2O}n (1), {[Co(AIP)(3,3′-bpt)]·H2O}n (2), and {[Ni(AIP)(3,3′-bpt)]·H2O}n (3) (H2AIP = 5-aminoisophthalic, 4,4′-bpt = 1H-3,5–bis(4-pyridyl)-1,2,4-triazole and 3,3′-bpt = 1H-3,5-bis(3-pyridyl)-1,2,4-triazole), have been hydrothermally synthesized and characterized by X-ray diffraction analysis. Both 1 and 3 have 2-D (6,3) honeycomb layers, which are further interlinked by bent pillared triazole-bipyridine ligands to form a bilayer structure. The structures can be simpli?ed to a (3,4)- and (3,5)-connected geometrical topology, respectively. Compound 2 has a Co-AIP layer structure in which the layers are pillared by 3,3′-bpt spacers to form the 3-D CsCl net.  相似文献   

3.
Two new coordination compounds, {[Cd2(btrm)(ip)2(H2O)2]?·?2H2O} n (1) and {[Cd2(btrm)(hip)2(H2O)4]?·?3H2O} n (2) (btrm?=?bis(1,2,4-triazol-1-yl)methane, H2ip?=?isophthalic acid, H2hip?=?5-hydroxy isophthalic acid), have been synthesized and structurally characterized. Compound 1 is a 3-D network with CdSO4 topology. Compound 2 contains 1-D ladder structures, which are interconnected by classical hydrogen-bonding interactions (O–H?···?O) to lead to 3-D supramolecular architectures. Luminescence was performed on 1 and 2, both of which showed strong fluorescent emissions in the solid state at room temperature.  相似文献   

4.
Two complexes formulated as {[Cd(btec)0.5(tmb)H2O]·4H2O}n (1) and {[Cd(H2btec)(tmb)(H2O)]·2H2O}n (2) (H4btec?=?1,2,4,5-benzenetetracarboxylic acid, tmb?=?2-((1H-1,2,4-triazol-1-yl)methyl)-1H-benzimidazole) have been synthesized and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Single crystal X-ray diffraction shows that 1 has a 2-D layer structure in which tmb bridges and all of the carboxylates from 1,2,4,5-benzenetetracarboxylate chelate. In 2 Cd(II) ions are bridged by monodentate carboxylates leading to a 2-D layer structure with all tmb ligands coordinated monodentate to Cd(II), hanging at two sides of the layers. Complexes 1 and 2 are further extended to 3-D supramolecular structures by hydrogen bonding interactions. Luminescent properties have been investigated in the solid state at room temperature.  相似文献   

5.
Three zinc compounds assembled from a bithiophene dicarboxylic acid (H2DMTDC) and different N-donor co-ligands, [Zn(DMTDC)(bpt)(H2O)]n (1), {[Zn(DMTDC)(5,5-dmbpy)]·0.5DMF·1.5H2O}n (2), and {[Zn(DMTDC)(1,3-bimb)]·2DMF·H2O}n (3) (H2DMTDC?=?3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, bpt?=?4-amino-3,5-bis(4-pyridyl)1,2,4-triazole, 5,5′-dmbpy?=?5,5′-dimethyl-2,2′-bipyridyl, 1,3-bimb?=?1,3-bis(imidazol-1ylmethyl)benzene), were solvothermally synthesized and characterized. Compounds 1 and 2 are 1-D linear and zigzag chains with different supramolecular structures. In 1, adjacent chains form zipper-like structures through N–H?N interactions. In 2, however, chains in adjacent layers are stacked in an unusual unparallel level through C–H?O interactions. Compound 3 features a highly corrugated 2-D (4,4) layer and the layers are penetrated by each other to give 3-D polycatenations. Right- and left-handed helical Zn-bimb chains are arranged alternately within and between the layers, leading to mesomeric property of the whole network. Thermal stability and the decomposed products of all compounds were investigated. Luminescent properties of the ligands and compounds in the solid state at room temperature have also been explored. Moreover, the luminescence intensities of the compounds in different solvents are largely dependent on the solvent.  相似文献   

6.
Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2] · 4.5H2O}n ( 1 ) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)] · H2O}n ( 2 ) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2] · H2O}n ( 3 ) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83 etb network topology. [Co(ada)(ebin)]n ( 4 ) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)] · 2H2O}n ( 5 ) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound 4 revealed a decrease in χmT product upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g = 2.39(2) with D = 40(3) cm–1 and J = –3.55(4) cm–1]. Compounds 1 and 5 undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative 1 shows potential as a sensor for the solution‐phase detection of nitrobenzene and m‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed.  相似文献   

7.
Four metal(II) complexes with benzene-1,2,3-triyltris(oxy)triacetic acid (H3L), {[Co1.5(L)(H2O)6]·6H2O}n (1), {[Co1.5(L)(4,4′-bipy)1.5(H2O)4]·4H2O}n (2), {[Co(HL)(2,2′-bipy)(H2O)2]·1.5H2O}n (3), and {[Cu(HL)(phen)(H2O)2]·H2O}n (4) (4,4′-bipy = 4,4′-bipyridine; 2,2′-bipy = 2,2′-bipyridine; phen = phenanthroline), were prepared and structurally characterized. Complex 2 displays a 1-D structure, while 1, 3, and 4 reveal 0-D structures, which further extend to 3-D supramolecular networks by hydrogen bonding interactions, of which 1 and 4 contain double-helical chains, 2 includes meso-helices, and 3 comprises single-helices. Furthermore, the thermal stabilities and antibacterial activities of the complexes were studied.  相似文献   

8.
Two copper(II) coordination polymers, {[Cu2(btre)(hsuc)Cl(H2O)]·1.5H2O}n (1) and {[Cu2(btre)(hsuc)Br(H2O)]·1.5H2O}n (2) (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane, H3hsuc = 2-hydroxysuccinic acid), were synthesized by the hydrothermal method via in situ hydroxylation reaction with fumarate (fum), btre and CuCl2/CuBr2, and characterized by elemental analyses, IR, TG and X-ray diffraction. 1 and 2 are isostructural and show a 4-connected 2-D network based on [Cu2O] dimers. 1 and 2 show good photocatalytic activity for the degradation of organic dyes methylene blue and methyl orange under UV light irradiation.  相似文献   

9.
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = ?0.95 cm?1.  相似文献   

10.
Two pairs of isostructural transition metal coordination polymers, {[Co(L)(H2O)]n} (1) and {[Zn(L)(H2O)]n} (3), {[Co(L)(4,4′-bipy)(H2O)]·H2O}n (2) and {[Zn(L)(4,4′-bipy)(H2O)]·H2O}n (4) (H2L = N-pyrazinesulfonyl-glycine acid and 4,4′-bipy = 4,4′-bipyridine), have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analyses. The structures show that 1 and 3 display 2-D polymeric grid frameworks with a 3-connected (4, 82) topology. 2 and 4 also exhibit a 2-D polymeric grid structure, but are constructed by a 4-connected (4, 4) topology. The adjacent 2-D polymeric grid frameworks for 1–4 are further linked by hydrogen bonding O–H?O interactions to form 3-D supramolecular interweaved orderly networks. The fluorescent properties of 3 and 4 were investigated in the solid state.  相似文献   

11.
Two new complexes, {[Zn(imb)(SO4)]·H2O}n (1) and {[Cd2(imb)2(SO4)2(H2O)]·CH3OH}n (2) (imb?=?2-(1H-imidazol-1-methyl)-1H-benzimidazole), have been solvothermally synthesized. Single-crystal X-ray diffraction shows that 1 displays a 2-D (4,4) network, which is further extended to a 3-D supramolecular structure by hydrogen bonding interactions. Complex 2 exhibits a 3-D framework with (3,5)-connected (42·6)2(42·65·83)2 topology. The results indicate that changing metal ions can influence the coordination modes of sulfate, and then affect the structures of the complexes. In addition, IR and UV–vis spectra, powder X-ray diffraction patterns, thermogravimetric analyses, and fluorescent properties of both complexes have been investigated.  相似文献   

12.
Three coordination polymers {[Mn(bte)(NO2-1,3-bdc)(H2O)]·H2O}n (1), {[Mn(btp)(NO2-1,3-bdc)(H2O)]·2H2O}n (2), and {[Mn(btb)(NO2-1,3-bdc)(H2O)]·H2O}n (3) (bte, 1,2-bis(1,2,4-triazol-1-yl)ethane; btp, 1,3-bis(1,2,4-triazol-1-yl)propane; btb, 1,4-bis(1,2,4-triazol-1-yl)butane, NO2-1,3- H2bdc, 5-nitroisophthalic acid) were synthesized by combination of bte, btp, and btb, conformationally flexible ligands with different spacer lengths, and the rigid [NO2-1,3-bdc]2?. In 1, two [NO2-1,3-bdc]2? anions link adjacent [Mn2(bte)2] rings to give an independent, 1-D metal–organic nanotube (MONT). The structure of 2 is an undulating 2-D (4,4) network. In 3, the combination of a [Mn(btb)]n single helical chain and two [Mn(NO2-1,3-bdc)]n linear chains assemble an intriguing independent, 1-D MONT. An interesting structural feature of 1 and 3 is that the nitro groups of each 1-D MONT interpenetrate into two adjacent 1-D MONTs to form a 1-D → 2-D interdigitated array. 3-D architectures in 1 and 3 are assembled via hydrogen bond interactions. The luminescent properties and thermal stabilities of 1, 2, and 3 were investigated.  相似文献   

13.
Four cobalt(II) coordination polymers, [Co2(oba)2(1,2-bix)2]n (1), [Co(oba)(1,3-bix)]n (2), {[Co4(oba)4(1,4-bix)4]·6H2O}n (3), and {[Co6(oba)6(1,4-bix)6]·2H2oba·3DMF·11H2O}n (4), where H2oba?=?4,4′-oxybis(benzoic acid), DMF = N,N-Dimethyl formamide, and 1,n-bix?=?1,n-bis(imidazol-l-yl-methyl)benzene (n?=?2, 3, 4), have been synthesized. These compounds were structurally characterized by single-crystal X-ray crystallography, IR spectroscopy, and thermogravimetric analysis. Compound 1 exhibits a 2-D nano square grid (4,4) network, while 2 features a 2-D structure with two distinct left- and right-handed helical chains. Compound 3 possesses a doubly interpenetrated double-layered framework structure. The structure of 4 is comprised of 1-D chains of rings. The structural differences reveal that the flexible dicarboxylate and neutral bis(imidazole) are effective building blocks in constructing coordination polymers with diverse architectures.  相似文献   

14.
Three zinc(II) coordination polymers {[Zn(btp)(1,2-bdc)(H2O)]?·?H2O} n (1), {[Zn(btp)(1,3-bdc)(H2O)]?·?1.5H2O} n (2), and {[Zn(btp)(NO2-1,3-bdc)(H2O)]?·?2H2O} n (3) were synthesized by 1,3-bis(1,2,4-triazol-1-yl)propane (btp) and bis-carboxylate. Compound 1 is a thick 2-D network; 2 and 3 are undulated 2-D (4,4) networks. In 2 and 3, two adjacent networks interpenetrate to form a new 2-D double-layer network, which is sustained by hydrogen-bonding interactions. Compounds 1 and 2 reveal blue emission maximum at 351 and 403, respectively, in the solid state at room temperature.  相似文献   

15.
Three coordination compounds, {[Co(btrp)2(H2O)2]?·?NO3?·?H2O} n (1), {[Co(btrp)2(H2O)2]?·?H2O?·?2H2btc} n (2), and {[Co(btrp)3]?·?2ClO4} n (3) (btrp?=?1,3-bis(1,2,4-triazol-1-yl)propane; H3btc?=?benzene-1,3,5-tricarboxylic acid), have been prepared via solvothermal method and characterized by single-crystal X-ray diffraction and elemental analyses. Compound 1 possesses a 1-D double-stranded chain composed of ribbons of 20-membered cycles. Binuclear water clusters link adjacent nitrate anions to form a 1-D supramolecular helix in the structure. Compound 2 has a 1-D double-stranded chain wherein free H2btc ligands constitute 1-D negative chains through classical hydrogen-bonding interactions (O–H?···?O). Compound 3 exhibits a triple-stranded 1-D chain. For 13, 3-D supramolecular structures are consolidated by interchain weak hydrogen-bonding interactions as well as electrostatic interactions.  相似文献   

16.
Two new coordination polymers formulated as {[Zn(bdic)(bmt)H2O]?·?0.5H2O} n (1) and {[Cd(bdic)(bmt)(H2O)2]?·?2H2O} n (2) (H2bdic?=?1,3-benzenedicarboxylic acid, bmt?=?1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. Both coordination polymers exhibit 1-D chain structure where bmt is unidentate and bdic2? bridging. In 1, bmt hangs at two sides of the main chain, whereas bmt hangs at one side of the main chain in 2. Fluorescent properties have also been determined.  相似文献   

17.
Three complexes [Zn2(IPA)2(phen)4](HIPA)2(NO3)2·H2O (1), {[Zn(IPA)2(bipy)]·3H2O}n (2), and {[Mn(IPA)2(bipy)(H2O)]·2H2O}n (3) (HIPA = indole-3-propionic acid, phen = 1,10-phenanthroline, bipy = 4,4′-bipyridine) were synthesized and characterized by physico-chemical and spectroscopic methods. Complex 1 displays a zero-dimensional structure, whilst 2 and 3 show one-dimensional chains, which are linked into supramolecular networks through hydrogen bonding interactions and/or π···π stacking interactions. The luminescence properties of complexes 1 and 2 were investigated.  相似文献   

18.
以肉桂酸C9H8O2(HL)及其衍生物对位取代肉桂酸R-L(R=CH3,Cl,NO2,OCH3,OH)为配体,分别与Eu3+配位,得到系列Eu3+配合物。X-射线单晶解析结果表明:对甲基肉桂酸铕(1)和对氯肉桂酸铕(2)为一维高分子链,对硝基肉桂酸铕(3)为双核结构。通过FT-IR和UV-Vis光谱分析了配体在配位前后的变化。记录和解析了各配合物的荧光光谱,研究了对位取代基吸电子性和配位小分子对配合物发光性能的影响。  相似文献   

19.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

20.
Five lanthanide(III) coordination polymers with 2-methyl-1H-imidazole-4,5-dicarboxylic acid (H3MIDC) and ammonium oxalate, {[(Ln1)2(HMIDC)2(C2O4)(H2O)3]?·?3H2O} n (Ln1?=?Nd (1), Sm (2)), {[Eu2(HMIDC)2(C2O4)(H2O)3]?·?0.5EtOH?·?3H2O} n (3), {[Ce2(HMIDC)2(C2O4)(H2O)3]?·?EtOH?·?3H2O} n (4), and {[Gd2(HMIDC)2(C2O4)(H2O)3]?·?MeOH?·?3H2O} n (5), have been prepared and structurally characterized. Single-crystal X-ray diffraction analyses reveal that 1 and 2 are isostructural, as are 3, 4, and 5. Each exhibits a 3-D open framework, which is built by a regular 2-D grid connected by HMIDC2? and Ln(III). The luminescence and thermal properties of these complexes have been investigated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号