首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium(II) complexes of type [Pd(L)Cl2] [where, L?=?benzaldehyde-1,1-diphenyl-2-thiohydrazone (L1), salicylaldehyde-1,1-diphenyl-2-thiohydrazone (L2), acetaphenone-1,1-diphenyl-2-thiohydrazone (L3) and cyclohexanone-1,1-diphenyl-2-thiohydrazone (L4)] have been synthesized. The thiohydrazones can exist as thione-thiol tautomers and coordinate as a bidentate N–S ligand. The ligands are found to be monobasic bidentate. The complexes have been characterized by elemental analysis, IR, mass, electronic, 1H NMR spectroscopic studies. In vitro antifungal studies against fungi Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger for some complexes have also been carried out.  相似文献   

2.
Palladium(II) complexes of type [Pd(L)Cl2] [where L=2-aminopyridine-N-thiohydrazide (L1), (2-aminopyridine-N-thio)-1,3-propanediamine (L2), benzaldehyde 2-aminopyridine-N-thiohydrazone (L3) and salicylaldehyde-2-aminopyridine-N-thiohydrazone (L4)] have been synthesized. The thiohydrazide, thiodiamine and thiohydrazones can exist as thione-thiol tautomer and coordinate as a bidentate N-S ligand. The ligands found to act in bidentate fashion. The complexes have been characterized by elemental analysis, IR, mass, electronic, 1H NMR spectroscopic studies, and TG/DTA study. Antifungal studies of some complexes were also carried out. Various kinetic and thermodynamic parameters like order of reaction (n), activation energy (E a), apparent activation entropy (S # ) and heat of reaction (ΔH) have also been carried out for one complex.  相似文献   

3.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

4.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

5.
Nickel(II) complexes of type [Ni(L)2Cl2] and [Ni(L)2(OCOCH3)2], where L = (cyclohexyl-N-thio)-1,2-ethylenediamine (L1) and (cyclohexyl-N-thio)-1,3-propanediamine (L2) has been synthesized and characterized by elemental analysis, FT-IR, mass, UV-Vis, and 1H NMR spectroscopic studies. The thiodiamines coordinate as a bidentate N-S ligand. The ratio of the metal: ligand was 1: 2 for all the complexes. The binding sites are the azomethine nitrogen and thioamide sulfur. The complexes are found to be soluble in acetone, dimethylformamide, and dimethylsulfoxide. All the complexes were found amorphous in nature. Molar conductance values in DMSO indicate the nonelectrolyte nature of the complexes. In vitro antifungal and in vitro antibacterial studies were performed against fungal and bacterial strains, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger, and Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, respectively. Preliminary antimicrobial screening shows the good results against both the fungal and the bacterial strains, which can lead through the investigation of better drug. The article is published in the original.  相似文献   

6.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

7.
The 12- and 14-membered diazadioxo macrocyclic ligands, 1,2?:?7,8-diphenyl-6,9-diaza-3,12-dioxocyclododecane (L1) and 1,2?:?8,9-diphenyl-7,10-diaza-3,14-dioxocyclotetradecane (L2), were synthesized by condensation between o-phenylenediamine, 1,2-dibromoethane/1,3-dibromopropane, and catechol. Metal complexes [ML1Cl2] and [ML2Cl2] [M?=?Co(II), Ni(II), Cu(II), and Zn(II)] were prepared by interaction of L1 or L2 with metal(II) chlorides. The ligands and their complexes were characterized by elemental analyses, IR, 1H, and 13C NMR, EPR, UV-Vis spectroscopy, magnetic susceptibility, conductivity measurements, and Electrospray ionization-mass spectral (ESI-MS) studies. The results of elemental analyses, ESI-MS, Job's method, and conductivity measurements confirmed the stoichiometry of ligands and their complexes while absorption bands and resonance peaks in IR and NMR spectra confirmed the formation of ligand framework around the metal ions. Stereochemistry was inferred from the UV-Vis, EPR, and magnetic moment studies.  相似文献   

8.
Mixed ligand complexes of Co(II) with nitrogen and sulfur donors, Co(OPD)(S–S) · 2H2O and Co(OPD)(S–S)L2 [OPD = o-phenylenediamine; S–S = 1,1-dicyanoethylene-2,2-dithiolate (i-MNT2?) or 1-cyano-1-carboethoxyethylene-2,2-dithiolate (CED2?); L = pyridine (py), α-picoline (α-pic), β-picoline (β-pic), or γ-picoline (γ-pic)], have been isolated and characterized by analytical data, molar conductance, magnetic susceptibility, electronic, and infrared spectral studies. The molar conductance data reveal non-electrolytes in DMF. Magnetic moment values suggest low-spin and high-spin complexes. The electronic spectral studies suggest distorted octahedral stereochemistry around Co(II) in these complexes. Infrared spectral studies suggest bidentate chelating behavior of i-MNT2?, CED2?, or OPD while other ligands are unidentate in their complexes.  相似文献   

9.
Mononuclear oxorhenium(V) complexes [ReO(HL1 or H2L2)(PPh3)(OH2)Cl]Cl, {H2L1 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone)}, have been synthesized by ligand exchange with trans-trichloromonooxo-bis(triphenylphosphine) rhenium(V). The reaction of a 1?:?1 mixture of either NH4SCN, 1,10-phenanthroline (1,10-phen) or 8-hydroxyquinoline (8-OHquin) and H2L1 or H3L2, with trans-ReOCl3(PPh3)2 yielded the mononuclear oxorhenium(V) complexes, [ReO(HL1 or H2L2)(PPh3) (SCN)Cl], [ReO(HL1)(1,10-phen)Cl]Cl, [ReO(H2L2)(1,10-phen)(OH2)]Cl2·H2O and [ReO(HL1 or H2L2) (8-Oquin)Cl]. Thermal studies on these complexes showed structural transformations from mononuclear into binuclear complexes. [Re2O3(HL1 or H2L2)2(PPh3)2Cl2], [Re2O2(μ-L1 or L2)2(SCN)2] and [Re2O3 (H2L2)2(1,10-phen)2]Cl2, were synthesized pyrolytically in the solid state from the respective precursor rhenium complexes. The structures of all complexes and the corresponding thermal products were elucidated using elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments and 1H NMR and TG-DSC measurements. The prepared complexes and their thermal products have octahedral configurations. The ligands H2L1 or H3L2 behave as monoanionic bidentate or monoanionic tetradentate ligands towards the oxorhenium ions. The antifungal activities of the metal complexes towards Alternaria alternata and Aspergillus niger were tested and showed comparable behavior with well known antibiotics.  相似文献   

10.
Tungsten(VI) and molybdenum(VI) complexes [MO(L1)Cl2] and [M(X)(L2)Cl3] (X = O, NPh) with tridentate aminobis(phenolate) ligand L1 = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) and bidentate aminophenolate ligand L2 = 2,4-di-tert-butyl-6-((dimethylamino)methyl)phenolate) were prepared and characterised. These complexes are principally stable in open atmosphere under ambient conditions. When activated with Et2AlCl, they exhibited high activity in ring-opening metathesis polymerisation (ROMP) of 2-norbornene (NBE) and its derivatives. Especially complexes [M(NPh)(L2)Cl3], which are easily available from corresponding metal oxides MO3 by a simple three-step synthesis, were found very efficient ROMP catalysts for NBE (M = Mo, W) and 2-norbornen-5-yl acetate (M = Mo).  相似文献   

11.
Synthesis, characterization and biological studies of some thiodiamine metal complexes are described. Cobalt(II) and copper(II) complexes of type [Cu(L)2Cl2] and [Co(L)2SO4], where L = (cyclohexyl-N-thio)-1,2-ethylenediamine (L1) and (cyclohexyl-N-thio)-1,3-propanediamine (L2), were synthesized. The synthesized copper and cobalt thiodiamine complexes were characterized by elemental analysis, IR, mass, UV-VIS and 1H NMR spectroscopic studies. Thiodiamines coordinate as a bidentate N-S ligand. The binding sites are azomethine nitrogen and thioamide sulfur. Molar conductance values in dimethylsulfoxide indicate non-electrolyte nature of the complexes. In vitro-antimicrobial screening shows promising results against both bacterial and fungal strains.  相似文献   

12.
Summary Studies on the chelate complexes of copper(II) with the bidentate ligands, 1,4-diphenyl-2,3-dimethyl-1,4-diazabutadiene (PMB) and 1,4-di(p-methoxyphenyl)-2,3-dimethyl-1,4-diazabutadiene (MPMB), have been carried out. On the basis of the elemental analysis and molar conductivity, the complexes have been characterized as [Cu(PMB)Cl2], [Cu(PMB)2](ClO4)2, [Cu(MPMB)Cl2] and [Cu(MPMB)2](ClO4)2. Both diazabutadienes are bidentate via nitrogen atoms. The temperature dependence of the magnetic susceptibility and the electron paramagnetic resonance, i.r. and u.v.-vis spectra are reported. All compounds appear to be monomers.  相似文献   

13.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

14.
Few novel mixed ligand copper(II) complexes of the type [Cu(L)(Cl)2(H2O)], [Cu(L)2]Cl2, [Cu(L)L1] and [Cu(L)(phen)H2O]Cl2 (where L is the ligand obtained from the condensation of N-(2-aminoethyl)-1,3-propanediamine with m-nitrobenzaldehyde (La)/o-chlorobenzaldehyde (Lb)/benzaldehyde (Lc)/p-methoxybenzaldehyde (Ld)/p-hydroxybenzaldehyde (Le)/furfuraldehyde (Lf)/pyrrole-2-carboxaldehyde (Lg); L1 is another ligand obtained from the condensation of anthranilic acid with salicyaldehyde; phen = 1,10-phenanthroline) have been synthesized and characterized by the spectral and analytical techniques. From these data, it is found that the ligands adopt distorted octahedral geometry on metalation with Cu(II) ion. The XRD data indicate that the complexes are polycrystalline with nanosized grains. The SEM images of [Cu(La)phen(H2O)]Cl2 and [Cu(Lf)2]Cl2 complexes show that they have leaf and cauliflower like morphology. The in vitro biological screening effects of the investigated compounds have been tested against the bacteria such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus and fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by the well diffusion method. A comparative study of MIC values of the Schiff base ligands and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. An electrochemical study of the copper complexes containing electron withdrawing substituted ligands reveals that they prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state.  相似文献   

15.
MnII and PdII complexes of o-FC6H4C(H)NNC(SH)SCH2Ph (L1H) and o-FC6H4C(Me)NNC(SH)SCH2Ph (L2H) have been synthesized and characterized by physicochemical and spectroscopic means. The complexes are of the types [MnCl(L)H2O], [Mn(L)2], [Pd(L)2]Cl2 and [Pd(L)2]. Spectral data suggest that the ligands coordinate in a monobasic bidentate fashion through the S and N atoms. L2H and its complexes were found to exhibit antimicrobial properties.  相似文献   

16.
Terbium(III) and dysprosium(III) nitrate complexes with variously substituted 2,6-diphenylpiperidin-4-ones (L1)-(L10) of general formula [Ln(L)(NO3)2(H2O)2]NO3 have been synthesized. These complexes have been characterized by analytical, spectral and thermal studies. Molar conductance data show that these complexes are 1:1 electrolytes. The presence of two coordinated water molecules is confirmed by thermal and infrared spectral studies. IR spectral data indicate that piperidin-4-ones, in spite of having two coordinating sites, are monodentate, coordinating only through ring nitrogen. The IR and conductance data reveal the presence of two bidentate and one ionic nitrate groups. The nephelauxetic ratio (β), covalency factor (b1/2) and Sinha’s parameter (δ) evaluated from electronic spectral data of dysprosium(III) complexes indicate a little covalency in metal-ligand bonding.  相似文献   

17.
Two Schiff bases, L1 (5,6;11,12-dibenzophenone-2,3,8,9-tetramethyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene) and L2 (6,7;13,14-dibenzophenone-2,4,9,11-tetramethyl-1,5,8,12-tetraazacyclotetradeca-1,4,8,11-tetraene), bearing functionalized pendant arms have been synthesized by cyclocondensation of 3,4-diaminobenzophenone with 2,3-butanedione and 2,4-pentanedione, respectively. Mononuclear macrocyclic complexes [FeL1Cl2]Cl, [FeL2Cl2]Cl, [ML1Cl2], and [ML2Cl2] (where M?=?Co(II) and Cu(II)) have been prepared by reacting iron(III), cobalt(II), and copper(II) with the preformed Schiff base. The ligands and their corresponding metal complexes were characterized by elemental analyses, ESI-mass spectra, conductivity, magnetic moments, UV-Vis, EPR, IR, 1H-, and 13C-NMR spectral studies, and TGA-DTA/DSC data. The TGA profiles exhibit a two-step pyrolysis, although the iron complexes decompose in three steps, leaving behind metal oxides as the final product. The ligands and complexes were screened in vitro against Gram-positive bacteria, Gram-negative bacteria, and fungi.  相似文献   

18.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

19.
The present article describes the synthesis and characterization of tetracoordinated boron (III) complexes with monobasic bidentate ligands (L 1 H, L 2 H, L 3 H, L 4 H, L 5 H, and L 6 H) having the general formulae PhB(L)(OH) and PhB(L) 2 . The 1:1 and 1:2 reactions of phenyl boronic acid with monobasic bidentate ligands resulted in the formation of colored solids. The complexes have been characterized by elemental analysis, molecular weight determinations, and IR and NMR ( 1 H, 13 C and 11 B) spectroscopy, as well as UV-vis spectral studies. Based on these studies, a tetrahedral geometry has been proposed for the resulting complexes. The ligands, along with their complexes, have been screened in vitro against a number of pathogenic fungal and bacterial strains. The studies indicate that the boron chelates are more potent than the parent ligands.  相似文献   

20.
Ruthenium(II) complexes containing two tetradentate ligands, 1,2-bis(o-aminophenylthio)ethane (L1) and 1,2-(oaminophenylthio)xylene (L2), have been prepared. The complexes, which are of the type Ru(L)Cl2 [L = L1 (1);/L2 (2)], [Ru(L)(PPh3)Cl]Cl [L = L1 (3); L2 (4)] and [Ru(L)(bpy)](PF6)2 [L = L1 (5);/L2 (6)], were characterised by elemental analysis, i.r., u.v.-vis. and n.m.r. spectroscopy and their electrochemical behaviour has been examined by cyclic voltammetry using a glassy carbon working electrode and an Ag/AgCl electrode as the reference electrode. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号