首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

2.
Five dinuclear copper(II) complexes, [Cu2L1(N3)2·2H2O] (1), [Cu2L2(N3)2·2H2O] (2), [Cu2L3(N3)2·2H2O] (3), [Cu2L4(N3)2·2H2O] (4) and [Cu2L5(N3)2·2H2O] (5) of Robson type macrocyclic Schiff-base ligands derived from [2 + 2] condensation of 4-methyl-2,6-diformylphenol with 1,3-diaminopropane (H2L1), 1,2-diaminoethane (H2L2), 1,2-diaminopropane (H2L3), 1,2-diamino-2-methylpropane (H2L4) and 1,2-diaminocyclohexane (H2L5), respectively have been synthesized and characterized. Catecholase activity of those complexes using 3,5-di-tert-butylcatechol as substrate has been investigated in two solvents, methanol and acetonitrile. The role of the solvent and of the steric properties of the macrocyclic ligand of these complexes on their catecholase activity has been examined thoroughly. Acetonitrile is observed to be a better solvent than methanol as far as their catalytic activity is concerned. However, methanol reveals to be a better choice to identify the enzyme–substrate adduct. The investigation also prompted that chelate ring size does affect on the catalytic efficiency: 6-membered ring (as in H2L1) exhibits better activity than its 5-membered counterpart (as in H2L2). The activity of the 5-membered counter parts also depend upon the steric factor. Moreover, the catalytic activity of the complexes is enhanced to a significant extent by increasing the bulkiness of the substituents on the backbone of macrocyclic H2L2 ligands.  相似文献   

3.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

4.
A new class of azolate ligands, deriving from the equimolar condensation of 3,5-diamino-1,2,4-triazole with salicylaldehyde (H3L1) and o-anisaldehyde (H3L2) was prepared. In their anionic form, these species act as bridging moieties upon coordination to Cu(I) and Ag(I), giving rise to the formation of dinuclear complexes with the ligand in the typical N,N′-exobidentate conformation. The copper derivative [Cu(H2L1)(CH3CN)]2 (1) showed attractive reactivity in the replacement of the labile acetonitrile molecules. In particular, it was possible to isolate a dinuclear copper(I)-carbonyl complex [Cu(H2L1)(CO)]2 (4), by substitution of the nitrile with carbon monoxide. Moreover, the reaction of 1 with ethyl diazoacetate (EDA) in CH2Cl2 afforded a mono-carbene product, as established by 13C NMR data. Finally, the copper derivative 1 proved to be a highly diastereoselective catalyst in olefin cyclopropanation in the presence of ethyl diazoacetate. In the case of internal alkenes a trans:cis ratio of up to 97:3 was reached. The X-ray structure of a dinuclear Ag(I) complex, namely [Ag(H2L1)(PPh3)]2 (3), obtained by reacting the polymeric [Ag(H2L1)]n (2), with triphenylphosphine, is also reported.  相似文献   

5.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

6.
Two copper(II) complexes of disubstituted 2,2′-bipyridine (bpy = 2, 2′-bipyridine) with tetraalkylammonium groups, [Cu(L1)2Br](ClO4)5·2H2O (1) and [Cu(L2)2Br](ClO4)5·H2O (2) (L1 = [4, 4′-(Et3NCH2)2-bpy]2+, L2 = [4, 4′-((n-Bu)3NCH2)2-bpy]2+), have been synthesized and characterized. X-ray crystallographic study of 1 indicates that Cu(II) is a distorted trigonal bipyramidal or square pyramid. DNA binding of both complexes was studied by UV spectroscopic titration. In the presence of reducing reagents, the cleavage of plasmid pBR322 DNA mediated by both complexes was investigated and efficient oxidative cleavage of DNA was observed. Mechanistic study with reactive oxygen scavengers indicates that hydrogen peroxide and singlet oxygen participate in DNA cleavage.  相似文献   

7.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

8.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

9.
Reactions of Al(OPri)3 with LH2 =?[R′C(NYOH)CHC(R)OH] R=R′=CH3, Y =?(CH2)2 (L1H2); R =?CH3, R′ =?C6H5, Y =?(CH2)2 (L2H2); R =?R′ =?CH3, Y =?(CH2)3 (L3H2); R =?CH3, R′ =?C6H5, Y =?(CH2)3 (L4H2), in 1 : 2 molar ratio give mononuclear derivatives of aluminium AlLLH (1a1d). Equimolar reactions of AlLLH with M(OPri)3 (M =?Al and B) yield homo- and hetero-dinuclear derivatives AlLLM(OPri)2 (M=Al=2a2d M=B=3a3d). Reaction of 2a with L1H2 affords AlL1L1AlL1 (4). All these derivatives have been characterized by elemental analysis, molecular weight measurements and plausible structures have been suggested on the basis of IR, NMR [1H, 13C, 27Al and 11B] spectral data and FAB-mass studies of 2b and 3b. Schiff base L1H2 and its mononuclear derivative with aluminium (AlL1L1H) have been screened for their antibacterial activity against Escherischia coli and Bacillus subtilis.  相似文献   

10.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

11.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

12.
Abstract

The ligand chemistry of telluroethers, halotellurium ligands, and polytellurides has received good attention in the last decade. Tellurium-containing species have been used to design clusters. In the recent past the ligation of di and tri-telluroethers (including bis(4-methoxyphenyltelluro)methane) has been studied. Hybrid organotellurium ligands, N-[2-(4-methoxyphenyltelluro)propyl]phthalimid (L 1 ), 2-(4-ethoxyphenyltelluromethyl)-tetrahydro-2H-pyran (L 2 ), 2-(2-{4-ethoxyphenyl} telluroethyl)-1,3-dioxane (L 3 ), N-{2-(4-methoxyphenyltelluro)ethyl}morpholine (L 4 ), N-{2-(4-methoxyphenyltelluro)ethyl}-pyrrolidine (L 5 ), bis{2-(pyrrolidine-N-yl)ethyl}telluride (L 6 ), 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl) propoxy]ethane (L 7 ), and 2-[2-(4-methoxyphenyltelluro)ethyl]thiophene (L 8 ) have been designed recently and studied for their complexation reactions. The (Te, N) and (N, Te, N) ligands, L 5 and L 6 , coordinate with Hg(II) through Te and N both, but the bonding with N is some what weak. The morpholine nitrogen of L 4 does not coordinate with Pd(II) or Pt(II) along with Te. The L 7 behaving as a (Te, N) ligand has formed 20-membered metallomacrocycle ring with Pt(II). Tellurated Schiff bases 4-MeOC6H4TeCH2CH2N═C(CH3)C6H4-2-OH (L 9 ) and 2-HO-C6H4-(CH3)C═NCH2CH2TeCH2CH2N═C(CH3)C6H4-2-OH (L 10 ) and their reduction products 4-MeOC6H4TeCH2CH2NHCH(CH3)C6H4-2-OH (L 11 ) and 2-HO-C6H4-(CH3)CHNHCH2CH2TeCH2CH2NHCH(CH3)C6H4-2-OH (L 12 ) respectively have been synthesized and studied for ligation behaviour. The L 9 on reaction with the [Ru(p-cymene)Cl2]2 results in [Ru(p-cymene)(4-MeOC6H4TeCH2CH2NH2)Cl]Cl · H2O whereas in the reaction of L 10 with [Ru(p-cymene) Cl2]2, p-cymene ligand is lost resulting in [RuCl(L 10 -H)]. The recent developments, particularly designing of L 1 to L 12 and their ligand chemistry, are reviewed in the present paper.  相似文献   

13.
A new asymmetrical substituted triazole, 3-phenoxymethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (L) and its complexes, cis-[Cu2 L 2Cl4]·2CH3CN (1) and trans-[CoL 2Cl2]·2H2O·2CH3CN (2), have been synthesized and characterized by IR, single-crystal X-ray diffraction, thermogravimetric analyses and Hirshfeld surfaces. In the structure, two L are mainly stabilized by an intermolecular C–H?N hydrogen bond. In 1 (or 2), each L involves a doubly-bidentate (or chelating bidentate) coordination mode through one pyridine and two nitrogens (or one) of triazole, respectively. Complex 1 has a distorted trigonal bipyramidal [CuN3Cl2] core with two cis Cl? while 2 shows a distorted octahedron [CoN4Cl2] with two trans Cl?. We also prepared molecular Hirshfeld surface and fingerprint plot for L, 1 and 2, which revealed the influence of different metals on coordinate of L.  相似文献   

14.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

15.
A mononuclear complex [CuL] (1), a binuclear complex [Cu2LCl2(H2O)] (2), a trinuclear complex [Cu3L2](ClO4)2 (3) involving o-phenylenediamine and salicylaldehyde and another binuclear complex of a tridentate ligand (H2L1) [Cu2L21](CH3COO)2 (4) involving o-phenylenediamine and diacetylmonoxime have been synthesized, where H2L = N,N′-o-phenylenebis(salicylideneimine) and H2L1 = 3-(2-aminophenylimino)butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral and magnetic studies. The binuclear complex (2) was characterized structurally where the two Cu(II) centers are connected via an oxygen-bridged arrangement.  相似文献   

16.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

17.
Three new centrosymmetric dinuclear copper(II) complexes, [Cu2Cl2(L1)2] (1), [Cu2(μ 1,3-NCS)2(L2)2] (2), and [Cu2(μ 1,1-N3)2(L3)2] (3), where L1, L2, and L3 are the deprotonated forms of the Schiff bases 1-[(2-propylaminoethylimino)methyl]naphthalen-2-ol (HL1), 1-[(3-methylaminopropylimino)methyl]naphthalen-2-ol (HL2), and 2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Each Cu is coordinated by the three donors of the Schiff bases and by two bridging groups, forming a square-pyramidal geometry.  相似文献   

18.
19.
Abstract

Three new manganese and copper complexes, [Mn(ONO-(S)L1)2] (1), [Cu(ONO-(R)L2)]4·2CH3OH (2), and [Mn3(ONO-(S)L3)4(OAc)4(H2O)2] (3), {[H2L1 = (S)-2-phenyl-2-(2-hydroxy-5-chlorobenzylideneamino)ethane-1-ol], H2L2 = (R)-2-(2-hydroxy-5-chlorobenzylideneamino)butane-1-ol] and H2L3 = (S)-2-phenyl-2-(2-hydroxy-3-methoxybenzylideneamino)ethane-1-ol]}, have been synthesized. The crystal structures of 13 were determined through single-crystal X-ray diffraction. The structure of mononuclear 1 shows a six-coordinate octahedral geometry around the manganese ion. Complex 2 is a five-coordinate tetranuclear copper complex with the central Cu atoms adopting distorted square pyramidal geometry. Complex 3 shows a trinuclear structure with the six-coordinate Mn ions surrounded by four L3 ligands and acetate ions. The in vitro cytotoxicity screening revealed that the 1–3 had substantial cytotoxicity against three cancer cell lines (HepG2, MDA-MB-231, and A549), even higher than that of cisplatin. Inspiringly, 2 derived from (R)-Schiff base ligand H2L2 was more potent against MDA-MB-231 cells. Interaction of 13 with calf-thymus DNA (CT-DNA) has been investigated using UV-vis, viscosity and thermal denaturation experiments. It was found that 1 binds with DNA through intercalation while 2 and 3 interact with DNA probably through groove-binding and electrostatic mode. In addition, the capability of the complexes to bind with bovine serum albumin was monitored using some spectral techniques. The metal ions, chiral and nuclearity have significant influences on the properties of the title compounds.  相似文献   

20.
Eight dinuclear rhodium(II) complexes containing various, (primarily, polyfunctional) N-donor ligands in the trans position with respect to the Rh-Rh bond were synthesized and characterized by X-ray diffraction. In the Chinese-lantern dinuclear rhodium(II) pivalates, RhII 2 (μ-OOCCMe3)4(L)2 (L is 2,3-diaminopyridine (2), 7,8-benzoquinoline (4), 2,2′:6′,2″-terpyridine (5), N-phenyl-o-phenylenediamine (7)), and RhII 2 (μ-OOCCMe3)4L1L2 (3, L1 is 2-phenylpyridine, L2 = MeCN), the steric effects of the axial ligands are most strongly reflected in the Rh-N(L) and Rh-Rh bond lengths. The introduction of chelating ligands containing a conformationally rigid chelate ring leads to the cleavage of two carboxylate bridges to form the dinuclear double-bridged structure RhII 2 (μ- OOCCMe3)2(OCCMe3)22-L3)2, where L3 is 8-amino-2,4-dimethylquinoline (6). The reaction of complex 7 containing coordinated N-phenyl-o-phenylenediamine with pyrrole-2,5-dialdehyde afforded the new RhII 2(μ-OOCCMe3)4(L4)2 complex (8) containing 5-(1-phenyl-1-H-benzimidazol-2-yl)-1H-pyrrole-2-carbaldehyde (L4) in the axial positions of the dirhodium tetracarboxylate fragment. The coordinated diamine differs in reactivity from the free diamine. The reaction of the former with the above dialdehyde affords the [1+1]-condensation product, viz., 5-{(E)-[(2-anilinophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde, whereas the reaction of unsubstituted o-phenylenediamine gives 5-{(E)-[(2-aminophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde (L5) . The reaction of the latter with RhII 2(μ-OOCCMe3)4(H2O)2 affords the dinuclear complex RhII 2(μ-OOCCMe3)2(OOCCMe3)22-L5)2 (9), which is an analog of complex 6 containing only two bridging carboxylate groups.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 581–591, March, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号