首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation reactions between dibenzo-24-crown-8 (DB24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in the order Tl+ > K+ > Rb+ > Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° vs. ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions.  相似文献   

2.
Proton NMR spectroscopy was used to study the complexation reaction of 18-crown-6 (18C6) with K+, Rb+ and Tl+ ions in a number of binary dimethyl sulfoxide-nitrobenzene mixtures. In all cases, the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average 1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of dimethyl sulfoxide in the mixed solvent. It was found that, in all solvent mixtures used, Rb+ ion forms the most stable complex with 18-crown-6 in the series.  相似文献   

3.
Proton NMR was used to study the complexation reaction of Ag+ with octathia-24-crown-8 (OT24C8) in a number of binary dimethylsulfoxide (DMSO)–nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed OT24C8 was fast on the NMR time scale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of formation constants. In all solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. The TΔS° versus ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reaction.  相似文献   

4.
Proton NMR was used to study the complexation reaction of Li+ and Na+ ions with 15-Crown-5 (15C5) in a number of binary acetonitrile (AN)-nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed 15C5 was fast on the NMR timescale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift mole ratio data. There is an inverse relationship between the complex stability and the amount of AN in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of the formation constants. In all the solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. Finally, the experimental results were compared with theoretical ones that were obtained from molecular modeling methods. Based on our results, it is most probable that Li+-15C5 in solvent stays in a rather nesting complex form with greater LogKf values, but Na+-15C5 forms a complete perching complex form with lower LogKf values.  相似文献   

5.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

6.
Abstract

The exchange kinetics of the lithium ion with cryptand C222 were studied in acetonitrile-nitromethane mixtures by lithium-7 NMR line-shape analysis. In all solvent mixtures used, and over the entire temperature range studied, the chemical exchange of the Li+ ion between the solvated and complexed sites was found to occur via a bimolecular mechanism. The activation parameters Ea, δH?, δS? and δG? for the exchange have been determined. The free energy barrier for the exchange process appears to be nearly independent of the binary mixture composition. The results confirm the preferential solvation of the lithium ion with acetonitrile in the binary mixed solvent systems used.  相似文献   

7.
Proton NMR spectroscopy was used to study the complexation reaction between lithium ion and 12-crown-4, 15-crown-5 and 18-crown-6 in a number of binary acetonitrile-nitrobenzene mixtures. In all cases the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of acetonitrile in the mixed solvent. It was found that, in all solvent mixtures used, 15-crown-5 forms the most stable complex with Li+ ion in the series.  相似文献   

8.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

9.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

10.
Recombination rate coefficients of protonated and deuterated ions KrH+, KrD+, XeH+ and XeD+ were measured using Flowing Afterglow with Langmuir Probe (FALP). Helium at 1600 Pa and at temperature 250 K was used as a buffer gas in the experiments. Kr, Xe, H2 and D2 were introduced to a flow tube to form the desired ions. Because of small differences in proton affinities of Kr, D2 and H2 mixtures of ions, KrD+/D3+ and KrH+/H3+ are formed in the afterglow plasma, influencing the plasma decay. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The obtained rate coefficients, αKrD+(250 K) = (0.9 ± 0.3) × 10−8 cm3 s−1 and αXeD+(250 K) = (8 ± 2) × 10−8 cm3 s−1 are compared with αKrH+(250 K) = (2.0 ± 0.6) × 10−8 cm3 s−1 and αXeH+(250 K) = (8 ± 2) × 10−8 cm3 s−1.  相似文献   

11.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

12.
The complexation reactions between the Tl+ ion and large crown ethers dibenzo-30-crown-10 (DB30C10), dibenzo-27-crown-9 (DB27C9), dibenzo-24-crown-8 (DB24C8) and dibenzo-21-crown-7 (DB21C7) were studied in different acetonitrile-water mixtures at 25°C using an a.c. polarographic technique. The stoichiometry and stability of the complexes were determined by monitoring the shift in peak potential of the polarographic waves of the metal ion against the crown concentration. In all solvent mixtures used, the stability of the resulting 1:1 complexes was found to vary in the order DC24C8 » DB30C10 > DB21C7 > DB27C9 > DB24C8. There is an inverse relationship between the complex formation constants and the amount of water in the mixed solvent. In all cases, a linear relation was observed between log Kf and the mole fraction of acetonitrile in its mixtures with water.  相似文献   

13.
It is believed that the biological effects of chelating agents such as crown ethers are largely related to their ability to form complexes with ions and/or to facilitate ion transport across membranes. Specific influences are rarely related. Here we present the evidence that even one of the simplest representatives of the crown ether super-family, 1,4,7,10,13,16-hexaoxacyclooctane (18-crown-6), is able to affect the activity of Na+, K+-ATPase directly. Using nonlinear regression fitting to kinetic data we have found that the crown ether diminishes the apparent Michaelis constant, K m , and the maximal rate of ATP hydrolysis, V m , acting as noncompetitive inhibitors. The apparent dissociation constants, K i , for the crown interaction with the free ATPase and with the enzyme-substrate complex were established to be of 77 ± 3 mM and 21 ± 2 mM, respectively. So 18-crown-6 possesses weak but “direct” pharmacological activity on Na+, K+-ATPase hinders the formation of enzyme–substrate complex and detains the enzyme in this state.  相似文献   

14.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

15.
The complexation of Tl+, Pb2+and Cd2+ cations by macrocyclic ligands, aza-18-crown-6 (L1) and dibenzopyridino-18-crown-6 (L2) was studied in some binary mixtures of methanol (MeOH), n-propanol (n-PrOH), nitromethane (NM) and acetonitrile (AN) with dimethylformamide (DMF) at 22 °C using DC (direct current) and differential pulse polarographic techniques (DPP). The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in half-waves or peak potentials of the polarographic waves of metal ions against the ligand concentration. In all of the solvent systems, the stability of the resulting 1:1 complexes was found to be L1 > L2. The selectivity order of the L2 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+ and the selectivity of the L1 ligand for Pb2+ ion was greater than that of Tl+ ion. The results show that the stability of the complexes depends on the nature and composition of the mixed solvents. There is an inverse relationship between the stability constants of the complexes and the amount of dimethylformamide in the mixed solvent systems.  相似文献   

16.
The complex formation between Cu2+, Zn2+, Tl+ and Cd2+ metal cations with macrocyclic ligand, dibenzo- 18-crown-6 (DB18C6) was studied in dimethylsulfoxide (DMSO)–ethylacetate (EtOAc) binary systems at different temperatures using conductometric method. In all cases, DB18C6 forms 1:1 complexes with these metal cations. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, Genplot. The non-linear behaviour which was observed for variations of log K f of the complexes versus the composition of the mixed solvent was discussed in terms of changing the chemical and physical properties of the constituent solvents when they mix with one another and, therefore, changing the solvation capacities of the metal cations, crown ether molecules and even the resulting complexes with changing the mixed solvent composition. The results show that the selectivity order of DB18C6 for the metal cations in pure ethylacetate and pure dimethylsulfoxide is: Tl+ > Cu2+ > Zn2+ > Cd2+ but the selectivity order is changed with the composition of the mixed solvents. The values of enthalpy changes (ΔH°C) for complexation reactions were obtained from the slope of the van’t Hoff plots and the changes in standard enthalpy (ΔS°C) were calculated from the relationship: ΔG°C,298.15H°C − 298.15 ΔS°C. The obtained results show that in most cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ΔH°C and ΔS°C depend strongly on the nature of the medium.  相似文献   

17.
Cobalt(II) chloro complexation has been studied by titration calorimetry and spectrophotometry in solvent mixtures of N-methylformamide (NMF) and N,N-dimethylformamide (DMF). It revealed that a series of mononuclear CoClnn (2–n)+ (n=1–4) complexes are formed in the mixtures of NMF mole fraction x NMF=0.05 and 0.25, and the CoCl+, CoCl3 and CoCl4 2– complexes in the mixture of x NMF=0.5, and their formation constants, enthalpies and entropies were obtained. As compared with DMF, the complexation is markedly suppressed in the mixtures, as well as in NMF. The decreasing formation constant of CoCl+ with the NMF content is mainly ascribed to the decreasing formation entropy. DMF is aprotic and thus less-structured, whereas NMF is protic to form hydrogen- bonded clusters. In DMF-NMF mixtures, solvent clusters in neat NMF are ruptured to yield new clusters involving DMF, the structure of which depends on the solvent composition. The entropy of formation of CoCl+ will be discussed in relation to the liquid structure of DMF, NMF and their mixtures.  相似文献   

18.
Double-armed and tetra-armed cyclen-based cryptands (1a1d and 2) that bridge two aromatic rings by diethyleneoxy and triethyleneoxy units were prepared. The CSI-MS of 1:1 mixtures ([Ag+]/[ligand]) indicated that these new cryptands form 1:1 complexes with Ag+. The log K values for the interaction between Ag+ and 2 was greater than those of 1a1d, double-armed cyclens (3a3c and 4), and tetra-armed cyclen (5). The Ag+-ion-induced 1H NMR spectral changes suggest that the Ag+π interactions of the Ag+ complexes with the cryptands (1a1d and 2) are stronger than those in Ag+/double-armed and tetra-armed cyclens. To visualise the Ag+?π interactions, the isosurfaces of the LUMO and HOMOs of the Ag+ complexes were calculated at the B3LYP/3–21G(*) theoretical level. The LUMO of the Ag+ ion is distorted by interaction with the HOMOs of the aromatic side arms. The calculations reveal Ag+?π interactions between the Ag+ ion and the aromatic side arms, and these are shown graphically.  相似文献   

19.
The complexation reactions between Mg2+, Ca2+, Ag+ and Cd2+ metal cations with N-phenylaza-15-crown-5 (Ph-N15C5) were studied in acetonitrile (AN)–methanol (MeOH), methanol (MeOH)–water (H2O) and propanol (PrOH)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all of the complexes with Mg2+, Ca2+, Ag+ and Cd2+ cations is 1:1 (L:M). The stability of the complexes is sensitive to the solvent composition and a non-linear behaviour was observed for variation of log K f of the complexes versus the composition of the binary mixed solvents. The selectivity order of Ph-N15C5 for the metal cations in neat MeOH is Ag+>Cd2+>Ca2+>Mg2+, but in the case of neat AN is Ca2+>Cd2+>Mg2+>Ag+. The values of thermodynamic parameters (ΔH c o , ΔS c o ) for formation of Ph-N15C5–Mg2+, Ph-N15C5–Ca2+, Ph-N15C5–Ag+ and Ph-N15C5–Cd2+ complexes were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

20.
The dibenzo[3n]crown-n were synthesised from1,2-bis(o-hydroxyphenoxy)ethane obtained from 1,2-bis(o-formylphenoxy)ethane via Bayer-Willigeroxidations with H2O2/CH3COOH in good yields. The cyclic condensation of 1,2-bis(o-hydroxyphenoxy)ethanewith dichlorides, and ditosylates of polyethylene glycols in DMF/Me2CO3 gave the macrocyclesdibenzo[15]crown-5, dibenzo[18]crown-6, dibenzo[21]crown-7 anddibenzo[24]crown-8. The structures were identified using IR, mass, 1H and 13C NMR spectroscopy. Therecognition of the molecules for the cations, Li+, Na+, K+, Rb+ and Zn2+were conducted quantitatively with steady state fluorescencespectroscopy. The 1:1 association constants in acetonitrileshowed a good relation of the appropriate size of the macrocyclic ether towards the fitting cationradii. Namely, dibenzo[15]crown-5 was the best for Li+ binding and more than 100 times better thanNa+ and K+. Dibenzo[21]crown-7 was excellent for Rb+ binding while K+ is 100 timesless preferred. The largest crown ether studied, dibenzo[24]crown-8, exhibited the order of binding power,Rb+ > K+ > Na+. Zn2+ displayed, however, a marked binding with only dibenzo[18]crown-6.p>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号