首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel (E,E)-dioxime 5,6:13,14-dibenzo-9,10-benzo(15-crown-5)-2,3-bis(hydroxyimino)-7,12-dioxo-1,4,8,11-tetraazacyclotetradecane (H2L) has been synthesized by the reaction of 4′,5′-diaminobenzo(15-crown-5) with N,N′-bis(2-carbomethoxyphenyl)diaminoglyoxime (1). Only mononuclear CoIII and RuII complexes with a metal/ligand ratio of 1:2 have been isolated. The cobalt(III) complex bridged with BF2+ is achieved with H-bonded cobalt(III) complex and borontrifluoride ethyl ether complex. The reaction of BF2 bridged cobalt(III) complex with bis(benzonitril)palladium(II) chloride gives a trinuclear complex. The structures of dioxime and its complexes are proposed according to elemental analyses, 1H and 13C-NMR, IR and mass spectral data.  相似文献   

2.
Chiral bis(salicylaldimine) ligands derived from binaphthol (LH2) were synthesized by condensation of (R/S) 2,2′-dihydroxy-1,1′-binaphthyl-3,3′-dicarbaldehyde with 2-anisidine. Cobalt and nickel complexes (CoL)2(OAc)2Co (1) and (NiL)2(OAc)2Ni (2) were synthesized via reactions of the ligand with the corresponding metal acetate salt. Both complexes were characterized by elemental analysis, IR, MS, and single-crystal X-ray diffraction analysis. The X-ray analysis reveals linear trinuclear for 1 and 2 and the metal ions in both complexes are octahedral coordination. The two acetates separately bridge the center metal with one of the terminal metals in M–O–C–O–M manner. The magnetic susceptibility of 1 below 150?K suggests the existence of a weak ferromagnetic exchange at low temperatures, while antiferromagnetic interactions among Co(II) cores were observed above 150?K. Complex 2 shows similar magnetic behavior to that of 1.  相似文献   

3.
The synthesis of a new vic-dioxime ligand, N,N2-dihydroxy-O 1,O 2-bis(4-methyl-2-oxo-2H-chromen-7-yl)oxalimidamid (LH2) (1), bearing functional coumarins and its soluble mono- {Ni(II), Cu(II), Co(II)} and dinuclear {UO2(II)} complexes are presented. The fluorescence properties due to the 7-hydroxy-4-methylcoumarin fluorophore, which is conjugated with vic-dioxime that functions as the MN4 core of 1 and its complexes, are also reported. The formation of coordination complexes resulted in the blue shift in excitation spectrum and fluorescence quenching of 1. Both mononuclear {(LH)2M, M=Ni(II), Cu(II), and Co(II)} and homodinuclear {(LH)2(UO2)2(OH)2)} complexes have been obtained with metal?:?ligand ratios of 1?:?2 and 2?:?2, respectively. The characterizations of the new compounds were made by elemental analysis, 1H-NMR, FT-IR, UV-Vis, and LCMS data. Redox behavior of 1, involving oxime and coumarin moieties, and its complexes with Ni(II), Cu(II), Co(II) and UO2(II) were investigated by cyclic voltammetry. The comparison of the electrochemical behavior of 1 with its complexes enabled us to identify metal-, oxime- and coumarin-based signals.  相似文献   

4.
5.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

6.
Two new compounds containing the possible Fe(III) spin-crossover cation, [Fe(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine), and nickel bis(dithiolene) anions have been synthesized. Both are 1 : 1 salts [Fe(qsal)2][Ni(dddt)2] · CH3CN · CH3OH (1) and [Fe(qsal)2][Ni(pddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate; pddt = 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate). They have been characterized by X-ray crystal structure determination, elemental analysis, UV-Vis spectra and magnetic susceptibility measurements. The UV–Vis spectra are dominated by [Ni(L)2]? (1, L = dddt; 2, L = pddt). Magnetic studies show antiferromagnetic interaction in 1 from intermolecular S···S contacts and π–π stacking interactions, while the antiferromagnetic interaction in 2 is very weak.  相似文献   

7.
2?:?1 (L?:?M) Complexes of 2,6-bis(hydroxymethyl)pyridine (dhmp) with different Co(II) salts [CoCl2·6H2O, Co(SCN)2, Co(NO3)2·6H2O, CoSO4·7H2O and Co(OTos)2·6H2O] and Ni(II) salts [NiCl2·6H2O, Ni(NO3)2·6H2O, NiSO4·7H2O and Ni(OTos)2·6H2O] have been prepared (19) and studied by infrared spectroscopy and X-ray crystallography. Influences on the distortion of the coordination polyhedron, the arrangement of the donor atoms and the packing structure of the complexes were investigated in terms of the different kinds of anions and cations. In the metal chloride Complexes 1 and 2, water of hydration was found, while in Complex 3 the counterion (SCN) acts as a ligand. The crystal structures of all complexes, except 3, show N2O4 hexacoordinated metal ions; in 3 the coordination environment is N4O2. Complex 1 is another exception in containing cobalt(III) instead of cobalt(II) as for the other complexes with cobalt salts. Logically, in Complex 1, one of the dhmp ligands is mono-deprotonated. In the neutral Complexes 2 and 49, the basal planes of the octahedra are made up of O donors and N atoms occupy the axial positions. In 1 as well as in 3, two N and two O atoms form the base, but in 1 O, and in 3 N atoms are on the axis of the coordination sphere. Moreover, the nickel Complexes 2, 5, 7 and 9 are more symmetrical in structure than the cobalt Complexes 1, 4, 6 and 8, in accordance with the Jahn–Teller effect. Packing structures of the complexes show specific interactions based on strong and weak H-bonds that involve the counterions, hydroxy groups and aromatic units, leading to extended network structures.  相似文献   

8.
Thiosemicarbazone derivatives are formed on reaction between acetophenone, salicylaldehyde, benzophenone and/or 2-hydroxy-4-methoxybenzophenone and thiosemicarbazide or its N4H substituents (ethyl-, phenyl-, and p-chlorophenyl-). The ligands were investigated by elemental analysis and spectral (IR, 1H?NMR and MS) studies. The formulas of the prepared complexes have been suggested by elemental analyses and confirmed by mass spectra. The coordination sites of each ligand were elucidated using IR spectra revealing bidentate and tridentate coordination. Different geometries for the complexes were proposed on the basis of electronic spectra and magnetic measurements. The complexes have been analyzed thermally (TG and DTG) and the kinetic parameters for some of their degradation steps were calculated.  相似文献   

9.
The reaction of M(ClO4)2·6H2O with NH4NCS in presence of the organic sterically hindered bis(2-(di-3,5-dimethyl-1-pyrazolyl)ethyl)amine (bedmpza) afforded the five-coordinate mononuclear dithiocyanato-M(II) complexes [M(bedmpza)(NCS)2xMeOH (1: M = Cu2+, x = 0; 2: M = Ni2+, x = 0; 3: M = Co2+, x = 0.84). The compounds which proved to be non-electrolytes were characterized by IR and UV-Vis spectroscopy and their molecular structures were determined by single-crystal X-ray crystallography. In these complexes, the five-coordinate geometry was achieved by the three N-donors of the ligand bedmpza and two N atoms of the terminal thiocyanato ligands. The Cu(II) complex exists in two polymorphs 1-I and 1-II: an intermediate five-coordinate geometry with the two thiocyanato ligands are arranged as cisoid in 1-I and distorted square pyramidal geometry with the thiocyanato ligands are in transoid orientation in 1-II. Although the later geometry was also observed in the nickel complex 2, distorted trigonal bipyramidal geometry was found in 3. Each complex forms hydrogen bonds of type N-H?S from the secondary amine N(3) donor atoms to the adjacent terminal S(1) acceptor atoms of the thiocyanate group. The thermal behavior of the two polymorphs 1-I and 1-II were similar and no significant differences were observed between the two complexes.  相似文献   

10.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

11.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

12.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

13.
14.
A new vic-dioxime ligand containing benzophenone hydrazone units, N′-(benzophenone hydrazone)glyoxime [LH2] has been prepared from benzophenone hydrazone and anti-chloroglyoxime in absolute ethanol. Mononuclear nickel(II), cobalt(II), copper(II), zinc(II), and cadmium(II) complexes were also synthesized. Ligand and complexes were characterized by elemental analyses, FT-IR, 1H NMR, and 13C NMR spectroscopy, magnetic moments, and DTA/TG techniques. On the basis of the magnetic and spectral evidences a square-planar geometry for Ni(II) and Cu(II) complexes, tetrahedral for Cd(II) and Zn(II) complexes, and octahedral for Co(II) complex were proposed. Redox behaviors of ligand and its complexes were also investigated by cyclic voltammetry at the glassy carbon electrode.  相似文献   

15.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

16.
A series of 2-aminosubstituted (5Z)-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-ones (L) was prepared by the reaction of the corresponding 2-alkylthio-3,5-dihydro-4H-imidazole-4-ones with morpholine or piperidine in the presence of ytterbium(III) triflate. The resulting ligands were subsequently reacted with CuCl2·2H2O and CoCl2·6H2O to give the corresponding copper(II) and cobalt(II) complexes, respectively. Analysis revealed that the complexes were formed with an LMCl2 (M = Cu, Co)-type composition in all cases. The structures of the three cobalt complexes prepared in this way were determined by X-ray crystallography. The results revealed that the cobalt ions in these complexes were tetrahedrally coordinated to two chloride anions and two nitrogen atoms from the pyridine and imidazole moieties of the ligand. The electrochemical properties of the ligands and their complexes were evaluated by cyclic voltammetry, and the results revealed that the first stage in the reduction of the Co(II) and Cu(II) complexes involved the reversible formation of the corresponding Co(I) and Cu(I) complexes, respectively. The cytotoxicity activities of the organic ligands and their complexes were evaluated against several cancer cell lines, including MCF-7, A549 and HEK293 cells. The copper complexes of the organic ligands bearing a phenyl or allyl moiety at their N(3) position together with a piperidine substituent at the 2-position of their imidazolone ring exhibited the greatest cytotoxicity of all of the compounds tested in the current study.  相似文献   

17.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

18.
19.
The series of bidentate N^N iron(II) and cobalt(II) complexes containing 8-(1-aryliminoethylidene) quinaldine derived ligands, 8-[2,6-(R1)2-4-R2-C6H2NC (Me)]-2-Me-C10H5N, were synthesized and characterized by elemental and spectroscopic techniques. The molecular structures of Co1 (R1 = Me, R2 = H), Co3 (R1 = iPr, R2 = H) and Co4 (R1 = R2 = Me) were confirmed as the distorted tetrahedral by single crystal X-ray diffraction. On treatment with modified methylaluminoxane (MMAO), these complexes exhibited good catalytic activities of up to 5.71 × 105 g mol−1(Fe) h−1 for the ethylene dimerization at 30 °C under 10 atm of ethylene, in which iron pre-catalysts produced butenes with a high selectivity for α-butene. The correlation between metal complexes, catalytic activities and the product formed were investigated under various reaction parameters.  相似文献   

20.
Complexes of 2-((3,5-dimethyl)-1H-pyrazol-1-ylmethyl)pyridine (L1), 2-((3,5-ditert-butyl-1H-pyrazol-1-yl)methyl)pyridine (L2), 2-((3,5-diphenyl)-1H-pyrazol-1-yl)methyl)pyridine (L3), 2-((3,5-bis(trifluoromethyl)-1H-pyrazol-1-ylmethyl)pyridine (L4) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (L5) with cobalt(II), iron(II) and nickel(II), Ni(L1)Cl2 (1), Co(L1)Cl2 (2), Fe(L1)Cl2 (3), Ni(L2)Cl2 (4), Ni(L3)Cl2 (5), Co(L3)Cl2 (6), Fe(L3)Cl2 (7), Ni(L4)Cl2 (8) and Ni(L5)Cl2 (9), were used as catalyst precursors to produce vinyl-addition type norbornene polymers. Both the identity of the metal center and nature of ligand affected the polymerization behaviour of the resultant catalysts. Nickel catalysts were generally more active than the corresponding iron and cobalt analogues. The polynorbornene produced have high molecular weights (0.5-2.1 × 106 g/mol) and narrow molecular weight distributions. Analyses of polymer microstructure using NMR and IR spectroscopy confirmed the polymers produced to be vinyl-addition polynorbornene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号