首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4-[2-(Phenylthio)ethoxy]phthalonitrile 3 was synthesized by nucleophilic displacement of nitro group in 4-nitrophthalonitrile with 2-(phenylthio)ethanol 1. The metal-free phthalocyanine 4 was prepared by the reaction of a dinitrile monomer with 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I) phthalocyanines 5, 7, 8 were prepared by reaction of the dinitrile compound with the chlorides of Ni(II), Co(II), Cu(I) in DMAE. Zn(II) phthalocyanine 6, was prepared by reaction of the dinitrile compound with the acetates of Zn(II) in DMAE. Electrochemical behaviours of novel metal-free, Co(II) and Zn(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry techniques. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

2.
The synthesis of novel metal-free and metallophthalocyanines [Ni(II), Zn(II), Co(II), Cu(II)] were prepared by cyclotetramerization of a novel 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy}phthalonitrile and the corresponding metal salts (NiCl2, Zn(CH3COO)2, CoCl2 and CuCl2). The structures of the target compounds were confirmed using elemental analysis, IR, 1H NMR, 13C NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, metal-free, and zinc phthalocyanines show only ring-based reduction and oxidation processes. All complexes decomposed and coated on the electrode as nonconductive film at positive potential window of the electrolyte. An in situ electrocolorimetric method has been applied to investigate color of the electro-generated anionic and cationic forms of the complexes.  相似文献   

3.
The new 2-[2-(6-tert-butyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol 1 and 2-[2-(6-pentyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol 2 have been synthesized. Axially disubstituted silicon phthalocyanines 3 and 4 have been synthesized by introducing 2-[2-(6-tert-butyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol and 2-[2-(6-pentyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol at the axial positions of silicon(IV) phthalocyanine, respectively. The electrochemical properties of silicon phthalocyanines 3 and 4 were also investigated by cyclic voltammetry (CV) and square wave voltammetry. Voltammetric studies show that while 3 showed two reversible reduction and one irreversible oxidation couples, 4 showed two quasi-reversible reduction and one irreversible oxidation couples.  相似文献   

4.
Electrochemical and spectroelectrochemical analyses of 4‐(4‐(5‐phenyl‐1,3,4‐oxadiazole‐2‐yl)phenoxy)‐substituted metal‐free phthalocyanine ( H2Pc ( 1 )) and metallated phthalocyanines ( PbPc ( 2 ) and CoPc ( 3 )) were performed in solution. Voltammetric characterizations of the phthalocyanine complexes were investigated by using cyclic voltammetry and square wave voltammetry techniques. CoPc ( 3 ) gave common metal and ring based electron transfer reactions; however they split due to the aggregation. Although PbPc ( 2 ) illustrated reversible reduction processes during the voltammetric measurements, it was de‐metallized and thus turned to the metal free phthalocyanine during repetitive voltammetric cycles and in situ spectroelectrochemical measurements.  相似文献   

5.
The synthesis, characterization and voltammetric and spectroelectrochemical properties of newly synthesized metal-free and metallo phthalocyanines (M = Co, Cu, Zn) containing four dialkylaminophenoxy or trialkylammoniumphenoxy substituents on peripheral positions have been presented in this work. The new compounds have been characterized by using elemental analysis, UV–Vis, FT-IR, 1H NMR and MS spectroscopic data. Phthalocyanines with trialkylammoniumphenoxy substituents are soluble in aqueous solution over a wide pH range, and these compounds are present as aggregated species in solution as confirmed by the blue shift of Q-bands in their electronic spectra. The electrochemical behavior of the phthalocyanines was investigated by cyclic voltammetry and differential pulse voltammetry on a platinum-working electrode in DCM and DMSO. The voltammetric and spectroelectrochemical measurements of the complexes show that while cobalt phthalocyanine gives both ligand- and metal-based redox processes, metal-free, zinc and copper phthalocyanine complexes give only ligand-based processes in harmony with common phthalocyanine complexes.  相似文献   

6.
Metal free (6), cobalt(II) (7), copper(II) (8) and manganese(III) (9) phthalocyanines, which are tetra substituted at the peripheral positions with 2-[2-(1,1′:3′,1′′-terphenyl-2′-yloxy)ethoxy]ethoxy groups, were synthesized and characterized by IR, 1H-NMR,13C-NMR, UV–Vis and mass spectroscopy. Electrochemistry of the phthalocyanines were studied with voltammetric measurements by using cyclic voltammetry and square wave voltammetry techniques in DCM/TBAP electrolyte on a Pt working electrode. Electrochemical measurements exhibit that incorporation of redox active metal ions, CoII and MnIII, into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction couples of the metal. While MnIIIClPc showed only metal based reduction reactions, CoIIPc showed metal based and ligand based reduction reactions as expected. Cyclic and square wave voltammetric studies showed that phthalocyanines have reversible/quasireversible/irreversible redox processes, which are the main requirement for the technological usage of these compounds.  相似文献   

7.
Third-order nonlinear optical susceptibility, χ(3) of symmetrically octa-substituted metal-free phthalocyanine thin films measured by the third-harmonic generation technique are reported. The metal-free phthalocyanine has been found to show a χ(3) (−3ω; ω,ω, ω) value as large as 7.73×10−12 esu at 1.80 μm. The figure of merit, χ(3)/α, was estimated to be 4.17×1017 esu cm at 1.05 μm and 6.97×1016 esu cm at 1.65 μm. Both linear and third-order optical properties of liquid-crystalline metal-free phthalocyanines are discussed  相似文献   

8.
Phthalocyanines with four biphenyl-malonic ester groups on the periphery were synthesized by cyclotetramerization of 4-(1,1-dicarbethoxy-2-(4-biphenyl)-ethyl)-phthalonitrile. The new compounds were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, UV–Vis, and MASS spectral data. Electrochemical behaviors of novel Co(II), Cu(II), and Pd(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry, and applied potential chronocoulometry techniques. While Cu(II) and Pd(II) phthalocyanines give up to four common phthalocyanine ring reductions, Co(II) phthalocyanine gave two ligand-centered and two metal-centered redox processes. HOMO–LUMO gap of the complexes are comparable with the reported MPc papers.  相似文献   

9.
Group-IV-A phthalocyanines with four crown ether substituents have been prepared from 4′,5′-dicyanobenzo(15-crown-5), 4′,5′-diiminoisoindolino(15-crown-5), or metal-free phthalocyanine and the corresponding metal salts. The axial ligands of dichloro[tetra(15-crown-5)phthalocyaninato]silicon or -tin have been converted into dihydroxy derivatives by hydrolysis in aqueous Et3N. The catalytic effect of H2O-free CaC12 in quinoline is used for the polycondensation of dihydroxysilicon-phthalocyanine to cofacially arrayed polymers. The thermal stability of group-IV-A-metal phthalocyanines is confirmed by the higher initial decomposition points (290–440°) compared to those of the corresponding transition-metal phthalocyanines.  相似文献   

10.
The phthalonitrile derivative chosen for the synthesis of substituted phthalocyanines [M: 2H, Zn(II), Co(II)] with four chloro and four phenyloxyacetic acid substituents on the periphery is 4-chloro-5-(4-phenyloxyacetic acid)phthalonitrile. The sodium salt of carboxyl substituted zinc phthalocyanine is good soluble in water. Further reactions of zinc and cobalt phthalocyanines bearing phenyloxyacetic acid with thionylchloride gave the corresponding acylchlorides. This functional group reacted with hydroxymethylferrocene in dry DMF to obtain ferrocenyl substituted phthalocyanines. Also chloro substituent in new phthalonitrile was substituted with hexylsulfanyl substituent and its cyclotetramerization in the presence of Zn(AcO)2·2H2O and 2-(dimethylamino)ethanol resulted with zinc phthalocyanine. The compounds have been characterized by elemental analysis, MALDI-TOF mass, FT-IR, 1H NMR, UV-Vis and fluorescence data. Aggregations properties of phthalocyanines were investigated at different concentrations in tetrahydrofuran, dimethylformamide, dimethylsulfoxide, water, and water/ethanol mixture. Also fluorescence spectral properties are reported.  相似文献   

11.
This work reports on the synthesis of new unsymmetrically substituted phthalocyanines (M = Zn, Cu, Co, Ni) bearing three benzo-15-crown-5 units through oxy bridges and a nitro group. Phthalocyanines were prepared by a statistical condensation of 4-nitro phthalonitrile and 1-{[(benzo-15-crown-5)-4′-yl]oxy}phthalonitrile in the presence of anhydrous metal salts. All the target unsymmetrical phthalocyanines were separated by column chromatography and characterized elemental analyses, 1H NMR, IR, mass and UV–Vis spectral data. Electrochemical behaviors of Cu (II) phthalocyanine by cyclic voltammetry and differential pulse voltammetry techniques gave two common phthalocyanine ring reductions and one ring oxidation processes. Peak-to-peak separation of the processes II and III (388 mV) and the measure of gap (1.672 V) between the HOMO and LUMO for the complex, fits a phthalocyanine with electrochemically inactive metal center.  相似文献   

12.
Summary. Zinc(II) and magnesium(II) phthalocyanines bearing four substituted propylenedithiotetrathiafulvalene (PDT-TTF) units were synthesized and characterized by NMR, MS, EA, and UV/VIS spectra. The absorption peaks of two target molecules were hypsochromically shifted compared with the phthalocyanine parent compound. Studies using cyclic voltammetry indicated that introduction of Zn and Mg as central metals enhanced the electronwithdrawing between the phthalocyanine core and the PDT-TTF unit, thus losing one electron to form (PDT-TTF)+ becomes more difficult.  相似文献   

13.
We report, in this study, peripherally 3- and 4-substituted functionalized ionophore ligands (13) and their α- and β-tetra polyalcohol substituted lead(II) phthalocyanines M{Pc[S–CH(C3H7)(C2H5OH)]4} (7, 9 and 11) and M{Pc[S–C6H12(OH)]4} (8, 10 and 12) which are a mixture of different isomers. The complexes have been fully characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, MS (MALDI-TOF) and UV–Vis spectral data. These complexes induced H-type (face-to-face fashion) or J-aggregate (edge-to-edge) dimers when titrated with AgNO3 or Na2PdCl4 in a THF–MeOH solution. Cyclic and square wave voltammetry studies showed that the complexes gave three one-electron ligand-based reductions and two one-electron oxidation couples having diffusion controlled mass transfer character. Assignments of these redox couples were confirmed by spectroelectrochemical measurements. The observation of split Q bands, which are characteristic spectral behavior of metal-free phthalocyanines, indicates demetallization of the complexes during the spectroelectrochemical measurement under the applied potentials. The types of the substituents on the ring of the phthalocyanines affect the demetallization process of the complexes.  相似文献   

14.
Our efforts toward the development of the synthesis of a novel type of receptor ligand and its tetrasubstituted phthalocyanines, 2,9,16,23-tetrakis(6-hydroxyhexylsulfanyl) phthalocyanine, M[Pc(S–C6H13OH)4] (M = Zn(II), Cu(II), Co(II)), bearing sulfur and oxygen donor atoms on the periphery together with hexyl moieties, have been carried out together with spectroscopic and electrochemical characterization. The newly synthesized functional phthalocyanines were soluble in MeOH, EtOH, THF, DMF, CNP (α-chloronapthalene), DMSO and quinoline, and less soluble in i-PrOH and CH3CN. Cation binding abilities of the functional phthalocyanines with Ag+, Pd2+, Hg2+ and Cd2+, resulting in the formation of polynuclear phthalocyanine complexes, were evaluated by UV–Vis spectroscopic techniques. The spectroscopic properties of the complexes were affected strongly by the electron-donating sulfanyl units on the periphery. The cyclic voltammetry of the complexes were examined on a platinum electrode in DMSO. The new synthesized compounds have been characterized by elemental analysis, FTIR, 1H and 13C NMR, MS (ESI and MALDI-TOF) and UV–Vis spectral data.  相似文献   

15.
Novel Ni(II), Zn(II), Co(II) and Cu(II) phthalocyanines with four peripheral 4-[methyleneoxy(18-crown-6)] groups have been synthesized via the cyclic tetramerization of 4-[{(18-crown-6)-yl}methyleneoxy]phthalonitrile and the corresponding metal salts (NiCl2, Zn(CH3COO)2, CoCl2 and CuCl2). The thermal stabilities of the metal-free and metallophthalocyanine compounds were determined by thermogravimetric analysis. The structures of the target compounds were confirmed using elemental analysis, IR, 1H-NMR, 13C-NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while the cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, the metal-free, nickel, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes.  相似文献   

16.
Abstract

Synthesis and characterization of (E)-4-((5-bromo-2-(λ1-oxidanyl)benzylidene)amino)-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (1), its substituted phthalonitrile derivative (2), and its tetra substituted zinc(II) phthalocyanine complex (3) were performed. Compounds 1, 2, and 3 were characterized by methods such as elemental analyses, FT-IR, 1H-NMR, 13C-NMR (except for 3), and MALDI-TOF mass spectra. The photophysical and photochemical properties of this substituted zinc(II) phthalocyanine complex aimed to be used as a photosensitizer were investigated in DMSO solution for determination of their photosensitizing abilities in photocatalytic applications such as photodynamic therapy (PDT). The influence of the substituent as a bioactive compound on the phthalocyanine skeleton on spectroscopic, photophysical, and photochemical properties were also determined and compared with unsubstituted zinc(II) phthalocyanine and some zinc(II) phthalocyanines containing different substituents previously studied. According to photophysical and photochemical investigations, 3 has potential as a photosensitizer for PDT.  相似文献   

17.
In this study, the preparation of novel 7-hydroxy-3-(2-chloro-4-fluorophenyl)coumarin (1), the ligand, 7-(3,4-dicyanophenoxy)-3-(2-chloro-4-fluorophenyl)coumarin (2), metal-free phthalocyanine 3 and metallophthalocyanine complexes 4 and 5 (MPcs, M = Co, Zn), β-substituted with 7-oxo-3-(2-chloro-4-fluorophenyl)coumarin functional group was achieved. By the reaction of 7-hydroxy-3-(2-chloro-4-fluorophenyl)coumarin (1) with 1,2-dicyano-4-nitrobenzen in dry DMF as the solvent in the presence of K2CO3 as the base, the 7-(3,4-dicyanophenoxy)-3-(2-chloro-4-fluorophenyl)coumarin (2) was synthesized. Compound 2 reacted with Co(CH3COO)2·4H2O in 2-N,N-dimethylaminoethanol to furnish a novel coumarin containing cobalt(II) phthalocyanine 4. The cyclotetramerization of 2 with Zn(CH3COO)2·2H2O in 2-N,N-dimethylaminoethanol gave the novel coumarin containing Zn(II)phthalocyanine 5; while tetramerization without any metal salts in 2-N,N-dimethylaminoethanol gave the metal-free phthalocyanine 3. The structures of obtained compounds were confirmed by elemental analysis, UV–Vis, IR, MALDI-TOF mass and 1H NMR spectra. The cyclic and differential pulse voltammetry, and in situ spectroelectrochemistry of 7-oxo-3-(2-chloro-4-fuorophenyl)coumarin substituted phthalocyanines 3, 4 and 5 allowed us to identify metal- and phthalocyanine ring-based redox processes of the complexes.  相似文献   

18.
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.  相似文献   

19.
The synthesis of novel tetra‐substituted manganese and indium phthalocyanines was achieved by cyclotetramerization of corresponding phthalonitrile derivative. The new compounds have been characterized by using UV‐vis, IR, 1H NMR and mass spectroscopic data. Spectroelectrochemical characterization of an indium phthalocyanine complex was performed for the first time in this paper and its electrochemical and spectroelectrochemical responses were compared with manganese phthalocyanine, bearing a redox active metal center. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ion, MnIII, instead of InIII into the phthalocyanine core extends the redox capabilities of the complex including the metal‐based reduction couples of the metal center and affect the aggregation behavior of the complexes. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the phthalocyanines due to the interaction between the complexes and molecular oxygen. MnPc and InPc formed µ‐oxo species and this reaction changed the electrochemical and optic responses of the complexes, which are desired properties for sensor and electrocatalytic applications of a material. An in situ electrocolorimetric method has been applied to investigate the color of the electro‐generated anionic and cationic forms of the complexes for possible electrochromatic applications and for clarify the interaction mechanism of the MnPc with molecular oxygen.  相似文献   

20.
 Unsymmetrically substituted metal-phthalocyanines composed of three hexylthio groups and one 1-chloro-3,4-dicyano-6-[2-(2-pyridylmethylamino)phenylthio]benzene moiety was prepared by cyclization of the reactants in the presence of the anhydrous metal salts Zn(CH3COO)2, NiCl2, and CoCl2. The new unsymmetric phthalocyanines are very soluble in common organic solvents. The compounds were characterised by their elemental analyses, IR, 1H NMR, MS and UV/Vis spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号