首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Reactions of Mo(CO)6 with Na2WO4 · 2H2O in refluxing carboxylic anhydride produce the triangular bioxo-capped mixed-metal carboxylate clusters Na[MoW2O2(O2CR)9] (R = Me, 1; Et, 2), the propionate being hydrolyzed in 2M HCl containing ZnCl2 to form [MoW2O2(O2CEt)6(H2O)3]ZnCl4·2H2O (3). Cluster 2 is converted to the incomplete cuboidal tetraanion [MoW2O4(O2CEt)8]4- upon reacting with Cr(CO)6 in propionic anhydride at 120°, the latter species being trapped by Cr and Na± ions in the reaction mixture to afford the octanuclear heterometallic chain-like cluster Na2Cr2 [MoW2O4(O2CEt)8]2 (4). Clusters 1, 3 and 4 have been characterized by X-ray crystallography with the following crystal data, for 1: monoclinic, space group P21/c, a = 16.666(8), b = 11.096(3), c = 16.541(7) Å, β = 94.60(4)°, V = 3048.9 Å3, Z = 4, R, Rw = 0.070, 0.079; for 3, monoclinic, space group Cm, a = 10.259(3), b = 15.756(3), c = 10.870(3) Å, β = 96.18(3)°, V = 1746.8 Å3, Z = 2, R, Rw = 0.028, 0.034; for 4, triclinic, space group P-1, a = 13.013(5), b = 14.005(4), c = 12.357(4) Å, α = 109.71(2), β = 117.77(3), γ = 90.41(3)°, V = 1838.9 Å3, Z = 1, R, Rw = 0.037, 0.042.  相似文献   

2.
The reaction of W6Br12, NaBr, and WO2Br2 in the presence of Br2 in a sealed silica tube yields Na[W2O2Br6] together with WOBr4 and WO2Br2 in the low temperature zone (temperature gradient 1030/870 K). Na[W2O2Br6] crystallizes orthorhombically in the space group Immm (no. 71) with a = 3.775 Å, b = 10.400 Å, c = 13.005 Å and Z = 2. Pairs of condensed trans-[WO2Br4] octahedra with a common Br2 edge form along [100] double chains [W2O4/2Br6]1– via the oxygen atoms. The mixed valent tungsten atoms are bonded to W2 pairs with a 2 c–3 e bond (d(W–W) = 2.946 Å, d(W–O) = 1.888 Å, d(W–Brb) = 2.537 Å, d(W–Brt) = 2.535 Å, ∢O–W–O = 177.4°, ∢Brb–W–Brb (endocyclic) = 109.0°). The Na+ cations connect the anionic double chains to form two-dimensional layers parallel (001), which interact by van der Waals forces. The cations are eightfold coordinated by a cube of the terminal Brt ligands of the polymeric anions (d(Na–Br) = 3.138 Å). Na[W2O2Br6] may be discussed as an intercalation compound of the oxide bromide WOBr3.  相似文献   

3.
《Polyhedron》1999,18(26):3411-3416
The heterometallic polymeric cluster complexes Na2Ga2[Mo3O4(O2CEt)8]2 (1) and Na2AlGa[Mo3O4(O2CEt)8]2 (2) have been prepared by reaction of Mo(CO)6, NaMoO4·2H2O with GaCl3 and a mixture of AlCl3 and GaCl3 (1:1 molar ratio), respectively, in heated propionic anhydride and characterized by X-ray crystallography. The structures are isostructural and each consists of two triangular propionate cluster units [Mo3O4(O2CEt)8]4−, which act as polydentate ligands to link trivalent heterometal and sodium ions forming one-dimensional chain structures. Both clusters decompose in 2 M HCl at room temperature to produce discrete [Mo3O4]4+ cluster units. Thermal analysis of 1 reveals that the complex is air stable up to 250°C. IR spectra show the characteristic bands of [Mo3O4]4+ cores at 745–812 cm−1.  相似文献   

4.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

5.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

6.

The synthesis and structural characterization of a novel In(III) complex is described. The reaction between InCl3 with sodium mercapto-acetic acid (NaSCH2(CO)OH) in 4-methylpyridine (CH3(C5H5N), (4-Mepy)) at 25°C affords [ClIn(SCH2(CO)O)2]2-[(4-MepyH)2]2+ (1). X-ray diffraction studies of (1) show it to have a distorted square-pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P1(No. 2) space group with a = 7.8624(6) Å, b = 9.950(1) Å, c = 13.793(2) Å, α = 107.60(1)°, β = 90.336(8)°, γ = 98.983(9)°, V = 1014.3(4) Å3, R(F°) = 0.037 and Rw = 0.048.  相似文献   

7.
Reactions of WL(CO)3 (L = 1, 4, 7-triazacyclononane; C6H15N3) with bromine under different conditions afford the monomeric WVI compound, WO2LBr2, or the monomeric WV complex, WOLBr3. The former dimerizes in aqueous solution, yielding the [W2O5L2]2+ cation. Two diamagnetic isomers of the WV -dimer, [W2O4L2]2+, have been prepared : a yellow form with terminal oxo groups in cis-positions with respect to each other and a red species containing two terminal oxo-groups in trans-positions. The cationic WIV -trinuclear cluster, [W3O4L3]4+, has been isolated as the tetrabromozincate(2-) salt and its structure has been determined by single crystal X-ray diffraction. [W3O4L3][ZnBr4]2 crystallizes in the monoclinic space group P21/c with a = 12.698(2) Å, b = 21.267(6) Å, c = 15.687(7) Å, β = 92.94(3)0, and V = 4222 Å3, dealed. = 2.79 g cm?3 for Z = 4, and mol wt 1773.2. The structure was solved by direct methods using 7399 unique reflections with I≥ 2.5 σ (I). Final residuals were R1 = 0.089 and R2 = 0.096. The structure consists of [W3L3O4]4+ cations of the M3X13 cluster type and isolated ZnBr42? anions. Three tungsten atoms occupy the corners of an equilateral triangle bridged by three μ2-oxo- and one μ3-oxo-ligands; each tungsten atom has a distorted octahedral environment of three oxygen and three nitrogen atoms. The short W - W distances of 2,52 Å and the diamagnetism indicate metal-metal bonding. The green, diamagnetic binuclear WIII complex, [W2L2(μ? OH)2Br2]Br2 · 2 H2O, has been prepared by reduction of monomeric WLOBr3 in strongly acidic solution with zinc powder. The complex has been characterized by a single-crystal X-ray diffraction study; it crystallized in the orthorhombic space group Pnnm with a = 13.837(5) Å, b = 11.657(6) Å, c = 7.832 Å, and V = 1263 Å3, dcalcd. = 2.67 g cm?3 for Z = 2, and mol wt 1015.8. The structure was solved by direct methods using 783 unique reflections with I ? 2.5 σ(1). Final residuals were R1 = 0.062 and R2 = 0.084. The structure consists of dimeric cations [W2L2(μ? OH)2Br2]2+, bromide anions and molecules of water of crystallization. The tungsten centers are in a distorted octahedral environment of the tridentate N-donor igand, one coordinated bromide and two μ2-hydroxo bridges (edge sharing), respectively. The bromide ligands are in trans-positions with respect to each other. The four-membered W2(μ? OH)2 ring is planar. The W? W distance of 2.477(3) Å together with its diamagnetism imply the presence of a strong metal-metal bond between the tungsten(II1) centers (σ2π2δ2).  相似文献   

8.
Contributions on the Bonding Behaviour of Oxygen in Inorganic Solids. III [1] Mn2P2O7, Mn2P4O12 und Mn2Si(P2O7)2 — Crystal Growth, Structure Refinements and Electronic Spectra of Manganese(II) Phosphates By chemical vapour transport reactions in a temperature gradient single crystals of Mn2P2O7 (1050 → 950 °C) and Mn2P4O12 (850 → 750 °C) have been obtained using P/I mixtures as transport agent. Mn2Si(P2O7)2 was crystallized by isothermal heating (850 °C, 8d; NH4Cl as mineralizer) of Mn2P4O12 und SiO2. In Mn2Si(P2O7)2 [C 2/c, a = 17.072(1)Å, b = 5.0450(4)Å, c = 12.3880(9)Å, β = 103.55(9)°, 1052 independent reflections, 97 variables, R1 = 0.023, wR2 = 0.061] the Mn2+ ions show compressed octahedral coordination (d¯Mn—O = 2.19Å). The mean distance d¯Mn—O = 2.18Å was found for the radially distorted octahedra [MnO6] in Mn2P4O12 [C 2/c, Z = 4, a = 12.065(1)Å, b = 8.468(1)Å, c = 10.170(1)Å, β = 119.29(1)°, 2811 independent reflections, 85 variables, R1 = 0.025, wR2 = 0.072]. Powder reflectance spectra of the three pink coloured manganese(II) phosphates have been measured. The spectra show clearly the influence of the low‐symmetry ligand fields around Mn2+. Observed d—d electronic transition energies and the results of calculations within the framework of the angular overlap model (AOM) are in good agreement. Bonding parameters for the manganese‐oxygen interaction in [Mn2+O6] chromophors as obtained from the AOM treatment (B, C, Trees correction α, eσ, eπ) are discussed.  相似文献   

9.
SrFe[BP2O8(OH)2] was synthesised under mild hydrothermal conditions. The crystal structure was determined from single–crystal X–ray diffraction data: triclinic, space group P (No. 2), a = 6.6704(12) Å, b = 6.6927(13) Å, c = 9.3891(19) Å, α = 109.829(5)°, β = 102.068(6)°, γ = 103.151(3)°, V = 364.74(12) Å3 and Z = 2. The crystal structure of SrFe[BP2O8(OH)2] contains isolated borophosphate oligomers, [BP2O8(OH)2]5–, which are interconnected by FeIIIO4(OH)2 coordination octahedra. The resulting three–dimensional framework is characterised by elliptical channels running along [011]. Strontium takes positions inside the channels.  相似文献   

10.
Two cadmium(II) coordination polymers, [Cd(2-mBIM)(NCS)(SCN)] n (1) and [Cd2(2-mBIM)2(NO3)2(C4H4O4)(H2O)5] n (2) (2-mBIM = bis(2-methylimidazo-1-yl)methane, C4H4O4= succinate), have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in the triclinic space group P 1 with a = 9.0770(5) Å, b = 9.4043(4) Å, c = 19.8720(9) Å, α = 101.551(1)°, β = 93.498(1)°, γ = 108.484(1)°, V = 1562.02(13) Å3, and Z = 2. Each Cd(II) is octahedrally coordinated and connected with two adjacent Cd(II)'s by double end-to-end thiocyanate bridges, resulting in the formation of 1-D zigzag chains, linked to each other via bridging 2-mBIM giving a 2-D supramolecular framework. Complex 2 crystallizes in the monoclinic space group P2(1)/n with a = 12.6543(6) Å, b = 7.7128(4) Å, c = 17.3089(9) Å, β = 109.3980(10)°, V = 1593.45(14) Å3, and Z = 2. Cd(II) is coordinated with oxygen and nitrogens from two independent 2-mBIM, in a cis-configuration to form a 1-D helical structure. A 3-D supramolecular network comprised of succinate anion bridged 1-D helical chains, and weak hydrogen bonds between dimer waters gave 2-D layers.  相似文献   

11.
Yu-Fen Xiu  Li Xu 《中国化学》1992,10(2):130-137
The synthesis and the structural characterization of the title compound H2Na3[W3O(CCH3)-(O2CCH3)6(H2O)3][H2W12O40]·13.5H2O are described. It is known that the mixed oxo-ethylidynecapped tritungsten cluster can be obtained by Zn dust reduction of Na2WO4·2H2O in acetic anhydride. The title compound has been characterized by X-ray diffraction, UV/VIS and 1H NMR spectra. The tungsten atoms in the cluster cation and anion are in the oxidation states of W(IV) and W(VI) respectively. The crystal is rhombohedral with the space group R32, a = 17.058 (3)Å, c = 49.665 (9)Å, γ=120°, V=12516(9)Å3, Z=6, final R = 0.037 for 2071 reflections with I ≥3σ (I). Both the cluster cation and anion have a C3 symmetry. The important interatomic distances in angstroms for the cluster cation are: W—W, 2.730(2); W—μ3?O, 2.00; W—O (carboxy1), 2.12; W—Ot 2.18 (2).  相似文献   

12.
A new transition-metal (TM) complex of the Lindqvist polyanion Na[Cu(1, 3-pda)2]3[HNb6O19] · 3H2O (1, 3-pda = 1, 3-diaminopropane) has been prepared using pre-prepared TBA4[H4Nb6O19] · 7H2O as a precursor and characterized by single crystal X-ray diffraction, elemental analyses, IR spectra, and thermogravimetric analysis. Crystal data for the compound: rhombohedral, space group R-3c, a = 14.927(4) Å, b = 14.927(4) Å, c = 36.940(18) Å, γ = 120°, V = 7128(4) Å3, Z = 6. The structural unit of the title compound consists of a polyanion [HNb6O19]7?, a Na+, three [Cu(1, 3-pda)2]2+, and three crystal water molecules. The occupancy of all Cu atoms and water molecules is 0.5. X-ray diffraction indicated that the cations and the polyanion were linked through electrostatic interactions and intermolecular forces.  相似文献   

13.
Na2Sb5F9O3(NCS)2, a new complex, has been synthesized from NaSCN and SbF3 aqueous solutions and studied by chemical, X-ray diffraction, and thermal analyses and IR, 121,123Sb NQR, and 19F NMR spectroscopy. Its layered structure (triclinic symmetry system, a = 6.9998(1) Å, b = 9.4180(1) Å, c = 13.1094(2) Å, α = 74.815(1)°, β = 78.188(1)°, γ = 82.779(1)°, Z = 2, space group P $\bar 1$ ) is built of Na+ cations and [Sb10F18O6(NCS)4]4? decanuclear complex anions that consist of two [Sb5F9O3(NCS)2]2? pentanuclear complex anions linked by two weak Sb-F ionic bonds (2.529(2) Å). Decanuclear complex anions are linked into layers by secondary Sb…F bonds and Na-F bonds. Van der Waals interactions link these layers into a framework. The complex is stable up to 200°C.  相似文献   

14.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

15.
The crystal structure of [C10N2H10]2[P2Mo5O21(OH)2] · 2H2O, contains the heteropolyanion, [P2Mo5O21(OH)2]4—, together with diprotonated 4, 4′‐bipyridine. The heteropolyanion is built up from five MoO6 octahedra sharing four common edges and one common corner, capped by two PO3(OH) tetrahedra. The structure is stabilized by hydrogen bonds involving the hydrogen atoms of the 4, 4′‐bipyridine, water molecules and the oxygen atoms of the pentamolybdatobisphosphate. This is the first example that this kind of cluster could be isolated in the presence of a poly‐functional aromatic molecule ion. Crystal data: triclinic, P1¯ (No. 2), a = 9.983(2)Å, b = 11.269(2)Å, c = 17.604(4)Å, α = 73.50(3)°, β = 84.07(3)°, γ = 67.96(3)°; V = 1760.0(6)Å3; Z = 2; R1 = 0.037 and wR2 = 0.081, for 9138 reflections [I > 2σ(I)].  相似文献   

16.
Single crystals of Pb3O2(SeO3) have been prepared hydrothermally at 230 °C. The structure (orthorhombic, Cmc21, a = 10.529(2), b = 10.722(2), c = 5.7527(12)Å, V = 649.5(2)Å3) has been solved by direct methods and refined to R1 = 0.059 on the basis of 615 unique observed reflections (|Fo| = 4σF). The structure is based upon double [O2Pb3]2+ chains of edge‐sharing [OPb4]6+ tetrahedra. These [O2Pb3]2+ chains run parallel to [001], and their planes are parallel to (010). The pyramidal (SeO3)2— anions are located between the chains; their triangular oxygen atom bases lie parallel to (001) and all (SeO3)2— groups are pointing in the same direction. A short compilation of [O2M3] chains of oxocentred M4 tetrahedra in minerals and inorganic compounds is provided.  相似文献   

17.
A 1-D ladder-like aggregate, K2Na6[Na(H2O)Fe2(H2O)8(P5W30O110)] · 23.5H2O (1; K2Na6[1a] · 23.5H2O) has been obtained by conventional aqueous solution reaction. X-ray diffraction analysis reveals that 1 crystallizes in the monoclinic system, space group P 2 1 /m, a = 16.938(3) Å, b = 21.396(4) Å, c = 17.520(4) Å, β = 98.14(3)°, V = 6285(2) Å3, and Z = 2. Polyoxoanion 1a shows a 1-D ladder-like chain, built up of Preyssler anion and Fe3+ linkers, which represents the first extended structure based on Preyssler anion and transition metal linkers. The 1-D chains in 1 are further connected into a 3-D open framework by potassium and sodium cations. Compound 1 displays electrocatalytic activity towards the reduction of nitrite.  相似文献   

18.
The (iso)cyanurates Na[H2C3N3O3] · H2O, Na2[HC3N3O3] · H2O, Na2[HC3N3O3], and Na3[C3N3O3] were synthesized phase pure from Na2CO3 · 10H2O, NaOH, and cyanuric acid, respectively, in aqueous solution by carefully adjusting the crystallization conditions. The crystal structures of all compounds were determined by single‐crystal X‐ray diffraction {Na2[HC3N3O3] · H2O: P1 , a = 3.51660(10) Å, b = 7.8300(3) Å, c = 11.3966(4) Å, α = 86.4400(10)°, β = 85.5350(10)°, γ = 85.0720(10)°, Z = 2, R1 = 0.030, wR2 = 0.078; Na2[HC3N3O3]: Pnma, a = 6.3409(6) Å, b = 12.2382(13) Å, c = 6.5919(7) Å, Z = 4, R1 = 0.045, wR2 = 0.079; Na3[C3N3O3]: R3 c, a = 11.7459(3) Å, c = 6.5286(3) Å, Z = 3, R1 = 0.039, wR2 = 0.066}. The structures show ribbons (Na[H2C3N3O3] · H2O), dimers (Na2[HC3N3O3] · H2O), chains (Na2[HC3N3O3]), or columns (Na3[C3N3O3]) of hydrogen‐bonded and parallel stacked (iso)cyanurate anions. These motifs are shown to be characteristic for certain degrees of protonation and hydration, and all (iso)cyanurate crystal structures found so far were classified accordingly. X‐ray powder patterns, thermogravimetry curves, IR and UV/Vis spectra were measured for all compounds.  相似文献   

19.
The crystal structure of B‐type Er2O[SiO4] has been determined by single crystal X‐ray diffraction. It crystallizes with the (Mn,Fe)2[PO4]F type structure in the monoclinic space group C2/c (a = 14.366(2), b = 6.6976(6), c = 10.3633(16) Å, ß = 122.219(10)°, Z = 8) and shows anionic tetrahedral [SiO4]4– units and non‐silicon‐bonded O2– anions in distorted [OEr4]10+ tetrahedra. The [(Er1)O6+1] and [(Er2)O6] polyhedra form infinite chains which are connected by common edges.  相似文献   

20.
The crystal structure of sodium pyrosilicate (Na6Si2O7) was solved from single crystal diffraction data and refined to an R index of 0.051 for 17034 independent reflections. The compound is triclinic with space group P (a = 5.8007(8) Å, b = 11.5811(15) Å, c = 23.157(3) Å, α = 89.709(10)°, β = 88.915(11)°, γ = 89.004(11)°, V = 1555.1(4) Å3, Z = 8, Dx = 2.615 g · cm–3, μ(Mo‐Kα) = 7.94 cm–1). A characteristic feature of the crystals is a twinning by reticular pseudo‐merohedry, which simulates a much larger monoclinic C centered lattice (V′ = 6220 Å3, Z = 32). The twin element corresponds to a twofold rotation axis running parallel to the [0 direction of the triclinic cell. The compound belongs to the group of sorosilicates, i.e. it is based on [Si2O7] groups, which are arranged in layers parallel to (100). Charge compensation within the structure is accomplished by monovalent sodium cations distributed among 24 crystallographically independent positions. They are coordinated by four to six nearest oxygen neighbors. Most of the coordination polyhedra can be approximately described as distorted tetrahedra or tetragonal pyramids. An alternative understanding of Na6Si2O7 can be gained if the tetrahedrally coordinated sodium atoms are considered for the construction of a framework. Actually, each four of the dimers within a single slice are linked by a more or less distorted [NaO4] tetrahedron. The resulting structural motif is similar to the one that can be observed in melilites, where linkage between the T2O7 (T: Al, Si) moieties is provided by [MgO4]‐ (as in akermanite, Ca2Mg[Si2O7]) or [AlO4] tetrahedra (as in gehlenite, Ca2Al[AlSiO7]). By sharing common edges, the [NaO4] tetrahedra in Na6Si2O7 are forming columns running parallel to 25 . The resulting framework contains tunnels in which the more irregularly coordinated sodium cations are incorporated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号