首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Abstract

Reaction of VO(acac)2 with the hydrazone ligands N’-(2-hydroxybenzylidene)-3methylbenzohydrazide (H2L1) and N’-(2-hydroxybenzylidene)-3-methyl-4-nitrobenzohydrazide (H2L2) afforded two oxidovanadium(V) complexes, [VOL1(OMe)(MeOH)] (1) and [VOL2(OEt)(EtOH)] (2), respectively. The complexes have been characterized by elemental analyses, IR, UV-Vis, molar conductivity and X-ray single crystal diffraction techniques. The hydrazone ligands coordinate to the V ions through the phenolate oxygen, imino nitrogen and enolate oxygen atoms. The V ions in both complexes are in octahedral coordination, with the three donor atoms of the hydrazone ligands, and with the other three sites furnished by one methanol or ethanol oxygen atom, one deprotonated methanol or ethanol oxygen atom, and one oxo oxygen. The complexes were assayed for their antibacterial activity on the bacteria B. subtilis, E. coli, P. putida and S. aureus.  相似文献   

2.
Two new oxovanadium(V) complexes, [VOL1(SHA)] (I) and [VOL2(BHA)] (II), were prepared by the reaction of [VO(Acac)2] (Acac = acetylacetonate) with N′-(2-hydroxybenzylidene)isonicotinohydrazide (H2L1) and salicylhydroxamic acid (HSHA) and 4-chloro-N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L2) and benzohydroxamic acid (HBHA), respectively, in methanol. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra and single crystal X-ray diffraction (CIF file CCDC nos. 978238 (I) and 978392 (II)). The V atoms are in octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

3.
The synthesis and structure of two Cu(II) complexes, {[Cu2(L1)2]?·?DMF} n (1) and [CuL2(phen)] (2), are described. The dinegative hydrazones are obtained by deprotonation of both phenolic and amide moieties of N′-(5-bromo-2-hydroxybenzylidene)-3,5-dimethoxybenzohydrazide (H2L1) and N′-(2-hydroxybenzylidene)pyrazine-2-carbohydrazide (H2L2). In each complex the planar ligand binds the metal ion via phenolate-O, imine-N, and amide-O. Complex 1 is a polymer in which phenoxo-bridged binuclear Cu(II) units are further joined by equatorial–apical amide-O bridges. The Cu···Cu separations are 3.0306 and 3.8217?Å for the phenolate-O bridged pair and the amide-O bridged pair, respectively. Complex 2 is a monomer where chelating phen displays axial–equatorial bonding, with square-pyramidal Cu(II).  相似文献   

4.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

5.
Two new Schiff base ligands 2-chloro-N′-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (H2La) and 4-fluoro-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HLb) were synthesized and characterized. Their respective oxidovanadium complexes, [VOLa(OMe)(MeOH)]·MeOH (1) and [VO(μ-O)Lb]2 (2), were synthesized and characterized by spectroscopy and single-crystal X-ray diffraction. The coordination sphere of each V atom is octahedral. Both complexes showed selective heterogeneous catalytic properties with 74–98 % conversion, for the oxidation of cyclohexene, cyclopentene, and benzyl alcohol using H2O2 as primary oxidant.  相似文献   

6.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(CH3OH)] (1) and [MoO2L2(H2O)] (2), where L1 and L2 are dianionic form of N′-(2-hydroxy-3-methoxybenzylidene)-4methoxybenzohydrazide and N′-(2-hydroxy-3methoxybenzylidene)-2-hydroxybenzohydrazide, respectively, have been synthesized and structurally characterized by spectroscopic methods and single-crystal X-ray determination. The complexes are mononuclear molybdenum(VI) compounds. Mo in each complex is octahedral. The difference in the substituent groups in the benzohydrazides leads to coordination of different solvent molecules. Crystals of the complexes are stabilized by hydrogen bonds. The complexes are effective catalysts for sulfoxidation.  相似文献   

7.
制备了一个芳酰腙化合物4-氟-N''-(3-乙氧基-2-羟基苯亚甲基)苯甲酰肼(H2L)。利用H2L和VO(acac)2分别与甲基麦芽酚(mat)和乙基麦芽酚(Emat)在甲醇中反应,得到了2个配合物[VO(L)(mat)](1)和[VO(L)(Emat)](2)。通过元素分析、红外光谱、紫外可见光谱和核磁共振氢谱表征了这些化合物的结构。通过单晶X射线衍射进一步确定了化合物的结构。芳酰腙配体以二价阴离子的方式通过酚羟基氧、亚胺基氮和烯醇氧原子与钒原子进行配位。在每个配合物中,钒都采取八面体配位构型。将配合物通过灌胃对正常的大鼠和四氧嘧啶糖尿病大鼠给药2周时间,结果表明这两个配合物在剂量为10.0和20.0 mgV·kg-1时可以显著降低四氧嘧啶糖尿病大鼠的血糖值,而对于正常大鼠的血糖值却没有改变。  相似文献   

8.
制备了一个芳酰腙化合物4-氟-N''-(3-乙氧基-2-羟基苯亚甲基)苯甲酰肼(H2L)。利用H2L和VO(acac)2分别与甲基麦芽酚(mat)和乙基麦芽酚(Emat)在甲醇中反应,得到了2个配合物[VO(L)(mat)](1)和[VO(L)(Emat)](2)。通过元素分析、红外光谱、紫外可见光谱和核磁共振氢谱表征了这些化合物的结构。通过单晶X射线衍射进一步确定了化合物的结构。芳酰腙配体以二价阴离子的方式通过酚羟基氧、亚胺基氮和烯醇氧原子与钒原子进行配位。在每个配合物中,钒都采取八面体配位构型。将配合物通过灌胃对正常的大鼠和四氧嘧啶糖尿病大鼠给药2周时间,结果表明这两个配合物在剂量为10.0和20.0 mgV·kg-1时可以显著降低四氧嘧啶糖尿病大鼠的血糖值,而对于正常大鼠的血糖值却没有改变。  相似文献   

9.
The syntheses of three mixed ligand chelate copper(II) complexes of the type [Cu(L)(acac)(H2O)]BPh4 where acac=acetyleacetonate; L=N,N‐dimethyl,N′‐benzylethane‐1,2‐diamine ( L1 ), N,N‐dimethyl, N′‐2‐methylbenzylethane‐1,2‐diamine ( L2 ) or N,N‐dimethyl,N′‐2‐chlorobenzylethane‐1,2‐diamine ( L3 ) are reported and characterized by elemental analyses, spectroscopic and molar conductance measurements. The X‐ray structure of complex 1 shows that the central copper atom is placed in a distorted square pyramidal geometry made by acac and diamine chelate in the base and a H2O molecule on the apex. The prepared complexes are fairly soluble in a large number of organic solvents and show positive solvatochromism. Calculations of SMLR (stepwise multiple linear regression) method was utilized to find the best model explaining the observed solvatochromic behavior and showed that among different solvent parameters, donor number (DN) is a dominant factor responsible for the shift in the d‐d absorption band of the complexes to the lower wavenumber with increasing its values. The importance of substituent effect in diamine ligand on the spectral and SMLR measurements is also discussed.  相似文献   

10.
Dioxomolybdenum(VI) complexes [MoO2L(CH3OH)] (L?=?L1?=?N′-(2-hydroxy-5nitrobenzylidene)isonicotinoylhydrazide for 1, L?=?L2?=?N′-(4-diethylamino-2-hydroxybenzylidene)-4-methylbenzohydrazide for 2) were prepared and structurally characterized by physicochemical and spectroscopic methods and single-crystal X-ray determination. Mo in the complexes is octahedrally coordinated. Both complexes show effective catalysis in oxidation of cyclohexene, vinylbenzene, 1-butylene, and 1-pentene, to their corresponding epoxides. In general, high epoxide yields (over 89%) and selectivity (100%) were observed for all aliphatic and aromatic substrates.  相似文献   

11.
Vanadium(V) complexes with hydrazone-based ONO and ONN donor ligands that partly model active-site structures of vanadate-dependent haloperoxidases have been reported. On reaction with [VO(acac)2] (Hacac = acetylacetone) under nitrogen, these ligands generally provide oxovanadium(IV) complexes [VO(ONO)X] (X = solvent or nothing) and [VO(acac)(ONN)], respectively. Under aerobic conditions, these oxovanadium(IV) species undergo oxidation to give oxovanadium(V), dioxovanadium (V) or μ-oxobisoxovanadium(V) species depending upon the nature of the ligand. Anionic and neutral dioxovanadium(V) complexes slowly deoxygenate in methanol to give monooxo complexes [VO(OMe)(MeOH)(ONO)]. The anionic complexes [VO2(ONO)]- can also be convertedin situ on acidification to oxohydroxo complexes [VO(OH)(HONO)]+ and to peroxo complexes [VO(O2)(ONO)]-, and thus to the species assumed to be intermediates in the haloperoxidases activity of the enzymes. In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species [VO2(ONN)] as observed by51V NMR and electronic absorption spectroscopic studies.  相似文献   

12.
Some new oxovanadium(V) complexes, [VOL1-3(OEt)(EtOH)] (1-3), have been reported, which were obtained from the reaction of the Schiff bases H2L1-3 (where H2L1 = the salicylhydrazone of diacetyl monoxime; H2L2 = the 4-methoxy salicylhydrazone of diacetyl monoxime and H2L3 = the 4-hydroxy salicylhydrazone of diacetyl monoxime) with VO(acac)2 in a 1:1 molar ratio. Three 4-R-aroylhydrazoneoximes (V) have been used as ligands in the present study, differing in the inductive effect of the substituent R (R = H, OCH3 and OH), in order to observe their influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and metal complexes were successfully characterized by elemental analysis, IR, UV-Vis and NMR spectroscopy. An X-ray diffraction study of [VOL1(OEt)(EtOH)] (1) reveals that the metal center has a distorted octahedral O5N coordination sphere, where the O,N,O donor ligand and the ethoxo group constitute a satisfactory O3N basal plane. Cyclic voltammetry of the complexes show a quasi-reversible cyclic voltammetric response in the potential range 0.29-0.36 V involving a single electron V(V)-V(IV) reduction. The complexes have also been screened for their antibacterial activity against Escherichia coli, Bacillus, Proteus and Klebsiella. Minimum inhibitory concentrations of these complexes and the antibacterial activities indicate compound 1 as the potential lead molecule for drug design.  相似文献   

13.
A pair of Mo(VI) complexes, [MoO2L1(MeOH)] (1) and [MoO2L2(MeOH)] (2), where L1 and L2 are the dianions of 2-amino-N’-(3-bromo-5-chloro-2-hydroxybenzylidene)benzohydrazide (H2L1) and 2-amino-N’-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (H2L2), respectively, have been prepared and characterized by physico-chemical methods and single-crystal X-ray diffraction. The Mo atom in each complex is coordinated by the phenolate oxygen, imino nitrogen and enolate oxygen of the hydrazone ligand, together with a methanol ligand and two oxo groups, giving a distorted octahedral geometry. The complexes proved to be effective catalysts for the oxidation of various olefins.  相似文献   

14.
《印度化学会志》2021,98(2):100006
The new cis-dioxomolybdenum (VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3)(H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesized and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to triphenylphosphine, sulfoxidation of methyl-p-tolylsulfide or epoxidation of different alkenes using tert-butyl hydroperoxide as terminal oxidant. The catalytic activities were found to be comparable for all three complexes, but complexes 1 and 3 showed better catalytic performances than complex 2, which contains a more sterically demanding ligand than the other two complexes.  相似文献   

15.
This article describes the synthesis and characterization of oxovanadium(IV) complexes containing tetradentate Schiff-base ligands derived from condensation of ethylenediamine, meso-1,2-diphenyl-1,2-ethylenediamine, 1,2-orthophenylenediamine and 1,2-cyclohexanediamine with 5-bromo-3-nitro-2-hydroxybenzaldehyde. The novel VOL1:[VO(5-Br-3-NO2salen)], VOL2:[VO(5-Br-3-NO2saloph)] and VOL3:[VO(5-Br-3-NO2salchxn)] complexes were obtained in orange polymeric form with (V=O) stretching bands at 878, 884 and 884?cm?1, respectively, but the VOL4 complex was obtained as a green monomer with (V=O) stretching band at 978?cm?1. The redox process in acetonitrile was reversible for VOL4 and E° was determined to be approximately 950?mV but for VOL1–3 this process was irreversible or quasi-reversible. The VOL4 complex is considerably soluble in a wide variety of solvents and shows solvatochromic behavior. The 2 B 2?→2?E(I) transition wavenumber shows a linear correlation to the D.N. of the solvent.  相似文献   

16.
[MNCl2(PPh3)2] complexes (M = Re, Tc) react with N‐[(dialkylamino)(thiocarbonyl)]‐N′‐(2‐hydroxyphenyl)benzamidines (H2L1) with formation of neutral, five‐coordinate nitrido complexes of the composition [MN(L1)(PPh3)]. The products have distorted square‐pyramidal coordination spheres with each a tridentate, double‐deprotonated benzamidine and a PPh3 ligand in their basal planes.  相似文献   

17.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

18.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

19.
20.
The reaction of VO(acac)2 with 2-benzoylpyridine substituted aroylhydrazones is studied. Oxovanadium(IV) and (V) complexes are obtained, indicating the binding of ligands to the metal ion through the imine nitrogen, enolate oxygen and pyridyl nitrogen. The oxovanadium(IV) compound [VOL1(OCH3)] · 0.14H2O (1a) gets oxidized to dioxovanadium(V) species [VO2L1] (1b) upon crystal formation. The crystal structures of the ligand and the two vanadium complexes are reported. Single crystal X-ray diffraction studies of the compound [VO(HL2)(μ2-O)]2 (2) revealed a centrosymmetric dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号