首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Schiff base, namely Z ‐3‐((2‐((E )‐(2‐hydroxynaphthyl)methylene)amino)‐5‐nitrophenylimino)‐1,3‐dihydroindin‐2‐one, was synthesized from the condensation of 2‐hydroxy‐1‐naphthaldehyde and isatin with 4‐nitro‐o ‐phenylenediamine. It was structurally characterized on the basis of 1H NMR, 13C NMR and infrared spectra and elemental analyses. In addition, Ni(II) and Cu(II) complexes of the Schiff base ligand were prepared. The nature of bonding and the stereochemistry of the investigated complexes were elucidated using several techniques, including elemental analysis (C, H, N), Fourier transform infrared and electronic spectroscopies and molar conductivity. The thermal behaviours of the complexes were studied and kinetic–thermodynamic parameters were determined using the Coats–Redfern method. Density functional theory calculations at the B3LYP/6‐311G++ (d, p) level of theory were carried out to explain the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using LANL2DZ basis set. The total energy of highest occupied and lowest unoccupied molecular orbitals, Mullikan atomic charges, dipole moment and orientation are discussed. Moreover, the interaction of the metal complexes with calf thymus DNA (CT‐DNA) was explored using electronic spectra, viscosity measurements and gel electrophoresis. The experimental evidence indicated that the two complexes could strongly bind to CT‐DNA via an intercalation mechanism. The intrinsic binding constants of the investigated Ni(II) and Cu(II) complexes with CT‐DNA were 1.02 × 106 and 2.15 × 106 M−1, respectively, which are higher than that of the standard ethidium bromide. Furthermore, the bio‐efficacy of the ligand and its complexes was examined in vitro against the growth of bacteria and fungi to evaluate the antimicrobial potential. Based on the obtained results, the prepared complexes have promise for use as drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

3.
Photometric determination of aqueous Co(II), Cu(II), Ni(II) and Fe(III) was performed using indicator films prepared by immobilization of 1-nitroso-2-naphthol-3,6-disulfonic acid disodium salt (NRS) into hardened photographic film. Immobilization was based on electrostatic interaction of reagent and metal complexes with the gelatin. The isoelectric point pH of hardened gelatin (4.46±0.04) was evaluated by viscometry. Co(II), Fe(III), Ni(II) form 1:3 complexes with NRS in gelatin at pH 2 and Cu(II) forms 1:2 complexes. Their log β′ values were: Co-6.7, Fe-8.6, Cu-8.0, and Ni-6.4. The absorption maxima were: 370nm for NRS, and 430nm, 470nm, 495nm and 720nm for complexes of Co(II), Ni(II), Cu(II) and Fe(III). An algorithm for their simultaneous determination using the indicator films was developed. The detection limits were: clim(Co2+) = 0.45×10−5 M, clim(Fe3+) = 0.50×10−5 M, clim(Cu2+) = 0.67×10−5 M, clim(Ni2+) = 0.75×10−5 M,; and their sum clim(ΣMn+) = 0.82×10−5 M.   相似文献   

4.
Abstract

The stepwise complex formation between 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) with Co(II) and Mn(II) was studied by potentiometry at constant ionic strength 2.0 M (NaClO4) and T = (25.0 ± 0.1)°C, from pH measurements. Data of average ligand number (Bjerrum's function) were obtained from such measurements followed by integration to obtain Leden's function, F 0(L). Graphical treatment and matrix solution of simultaneous equations have shown two overall stability constants of mononuclear stepwise complexes for the Mn(II)/TRIS system (β1 = (5.04 ± 0.02) M?1 and β2 = (5.4 ± 0.5) M?2) and three for the Co(II)/TRIS system (β1 = (1.67 ± 0.02) × 102 M?1, β2 = (7.01 ± 0.05) × 103 M?2 and β3 = (2.4 ± 0.4) × 104 M?3). Slow spontaneous oxidation of Co(II) solutions by dissolved oxygen, accelerated by S(IV), occurs in a buffer solution TRIS/HTRIS+ 0.010/0.030 M, with a synergistic effect of Mn(II).  相似文献   

5.
1-Phenyl-2-[2-hydroxy-3-sulfo-5-nitrophenylazo]butadione-1,3 (H2L) was synthesized from benzoylacetone. The dissociation constants of the reagent were determined (pK 1 = 4.98 ± 0.03 and pK 2 = 8.53 ± 0.01). Stability constants of some metal complexes with this reagent were determined by potentiometric and conductometric titrations. The stability of these complexes decreased in the following order: Fe > Cu > UO2 > Ni > Co > Zn > Cd > Mn > Mg > Ca. The copper(II) H2L complex with a stoichiometry of 1: 2 was studied by photometry. ε = 1.4 × 104, Beer is law was obeyed in the copper concentration range from 0.25 to 3.07 μg/mL. The effect of foreign ions and masking agents on complexation was studied. A procedure for the photometric determination of copper(II) in seawater was developed.  相似文献   

6.
New Mn (II), Co (II) and Ni (II) azo chelates of 3-amino-5-mercapto-1,2,4-triazole have been designed and obtained. The structures of these newly isolated complexes were assigned according to elemental, thermal analyses, spectral measurements, conductivity and magnetic moment. The metal complexes were predicted to be not electrolytic from the measured molar conductance values. The magnetic moment and UV–Vis spectral data denoted the formation of octahedral geometries for Mn (II), Co (II) and Ni (II) complexes. Thermal properties and decomposition kinetics of the metal chelates are investigated using Coats-Redfern method. The kinetic parameters like activation energy (E*), pre-exponential factor (A) and entropy of activation (ΔS*) were quantified. The geometry of the metal complexes is optimized with the help of molecular modeling. The interaction of metal chelates with calf thymus DNA (CT-DNA) was evaluated via UV–Vis absorption and viscosity measurements. The obtained data elucidated that the Ni (II) chelate interact with DNA by groove binding while partial intercalative binding mode have been predicted for Mn (II) and Co (II) chelates. The estimated binding constants for the DNA-complexes are 3.85 ± 0.03 × 104, 1.03 ± 0.2 × 105 and 2.81 ± 0.02 × 105 M−1, for Mn (II), Co (II) and Ni (II) azo chelates, successively. Also, the synthesized complexes were tested for their in-vitro antimicrobial and anticancer efficacy.  相似文献   

7.
The temperature-jump method has been used to determine the nickel(II)- and cobalt(II)-arginine complexation kinetics. In the pH range studied, the neutral form of the ligand, HL, is the attacking, as well as the complexed, ligand species. The reactions reported on are of the type where n = 1, 2, 3 and M is Ni or Co. At 25° and ionic strength 0.1M the association rate constants are: for nickel(II) k1 = 2.3 × 103(±20%), k2 = 2.4 × 104(±20%), k3 = 3.5 × 104(±40%) M?1 sec?1; for cobalt(II) k1 = 1.5 × 105(±20%), k2 = 8.7 × 105(±20%), k3 = 2.0 × 105(±40%) M?1 sec?1. Arginine binds to metal ions less well than homologous chelating agents due to the electrostatic repulsion arising from the positively charged terminus of the zwitterion. Kinetically, the effect appears in the association rate constants with nickel reactions more strongly influenced than cobalt.  相似文献   

8.
The peptide linkage Schiff base (H2L) and its complexes have been synthesized and fully characterized by elemental analysis, UV–Vis, FTIR, 1H-NMR, 13C-NMR, EPR, and FAB-mass spectra. The stoichiometry of the complexes is [ML] (where M = Cu(II), Co(II), Ni(II), Zn(II), and VO(IV)). All the complexes exhibit square-planar geometry except the vanadyl complex which has square-pyramidal geometry. Interactions of the complexes and free ligand with double-stranded calf thymus DNA (CT-DNA) are studied by UV-spectrophotometric, electrochemical, and viscosity measurements. The data suggest that all the complexes form adducts with DNA and distort the double helix by changing the base stacking. Vanadyl complex forms a weaker adduct to CT-DNA than other complexes, probably due to the square-pyramidal geometry. CT-DNA induces extensive distortion in the planarity of vanadyl complex as EPR spectral calculations reveal. The intrinsic binding constants (K b) of [ZnL], [CuL], [CoL], and [NiL] are 1.1 × 105, 1.4 × 105, 0.8 × 105, and 0.6 × 105 M?1, respectively. Photo-induced DNA cleavage indicates that all complexes cleave DNA effectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding for the synthesized complexes. The antimicrobial results indicate that the complexes inhibit the growth of bacteria and fungi more than the free ligand.  相似文献   

9.
Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV–vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 106, 1.8 × 106, 2.0 × 106 and 1.5 × 106 M?1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.  相似文献   

10.
《Polyhedron》1988,7(15):1335-1340
Cu(II)-hydroxynaphthoate-picolinate and Zn(II)-hydroxynaphthoate-picolinate ternary systems were studied in dioxane-water (1 : 1, ν/ν) solutions at a 0.2 mol dm−3 ionic strength and 25°C. From EMF data the mixed ligand complexes M(hna)(pic) for M = Cu(II) and Zn(II) and M(hna)(pic)2 for M = Zn(II) were detected and their formation constants evaluated (log Kf = 18.94± 0.03, 18.09±0.08 and 23.4±0.07, respectively). Factors contributing to the stabilization of these complexes are discussed and optimum experimental conditions for their predominance established.  相似文献   

11.
《Electroanalysis》2004,16(24):2065-2072
The interaction between Cu(II) and pectin extracted from citrus fruit was studied in KNO3 0.10 mol dm?3 at 25 °C and pH 5.5, using ion selective electrode potentiometry and voltammetry, namely differential pulse polarography and square‐wave voltammetry. Although many independent variables may affect Cu(II)‐polymer interactions such as charge density, polymer concentration and copper to polymer concentration ratio, a good fitting was observed for the model with ML and ML2 complex species, when M:L total concentration (mol dm?3) ratio varies from 0.2 to 2.7 and the ligand concentration is in the range (0.2 to 1) g dm?3, i.e., (0.4 to 2)×10?3 mol COO? dm?3. The complex parameters found in these conditions were log βCuL=3.5±0.1 and log βCuL2= 8.0±0.2. For lower total ligand and total metal ion concentrations, used in voltammetry, the interaction Cu(II)‐pectin is affected by a cooperative mode (increase of metal ion‐ligand affinity) when the total metal ion concentration increases and by an anti‐cooperative mode when the total ligand concentration increases, possibly due to different conformations of the polymer.  相似文献   

12.
《Analytical letters》2012,45(10):1557-1565
Abstract

A spectrometric study of the reaction between Pd(II), Fe(III) and Pt(IV) ions, and Mandelazo I was carried out. The optimum conditions favouring the formation of the complexes are extensively investigated. The stoichiometry of the complexes formed in solution (1:2, 1:1, 1:1), their apparent stability constants (5.45 × 109, 2.39 × 106, 4.12 × 105) and the ranges for obedience to beer's law (0.2 – 6.4, 0.25 – 7.0, 1.5 – 42.0 μg/mL) are reported for Pd(II), Fe(III) and Pt(IV), respectively. The effect of some metal ions including Cu(II), Zn(II), Mn(II), Cd(II), Hg(II), Co(II), Ni(II), Be(II), Al(III), Th(IV) and U(VI), on the maximum absorbance of the formed complexes was also investigated.  相似文献   

13.
Nickel(II) and palladium(II) complexes of monodentate aminophosphine ligands were prepared and characterized. In ethylene oligomerization and subsequent Friedel–Crafts alkylation of toluene, the Ni(II) complexes Ni‐1 and Ni‐2 were activated with aluminium co‐catalysts and generated tandem catalysts with high activities (up to 1.1 × 106 g (mol Ni)?1 h?1) which are comparable with those of previously reported bidentate Ni(II) catalysts. The Pd(II) precatalyst Pd‐1 showed high activities (up to 2.0 × 105 g (mol Pd)?1 h?1) in the polymerization of norbornene.  相似文献   

14.
Cyclopalladated complexes based on dibenzo[a,c]phenazine were studied by 1H NMR and electronic absorption and emission spectroscopy, and cyclic voltammetry. Replacement of ethylenediamine by heterocyclic ligands scarcely affects the coordination-induced proton shifts of the diazine part of the cyclometalated ligand, but, as the basicity of chelated ligands decreases, the screening of protons of the carbanionic part of those cyclometalated ligands which is the most proximate to the coordination center regularly decreases. Cyclopalladation reveals itself in the following characteristic parameters of photo-and electro-induced electron-transfer processes: longwave absorption band, λmax (437±7) nm and ε (3.0±1.5) × 103 l mol?1 cm?1, vibration-structured low-temperature luminescence resulting from spin-forbidden optical transition from the excited to ground state of the complex with the energy E (16.98±0.03) kK and the lifetime τ (190±20) μs, and reversible one-electron electroreduction wave with E 1/2 ?(1.39±0.03) V.  相似文献   

15.
A new calix[4]pyrrole functionalized vic-dioxime, 3-(4-methyl-9,9,14,14,19,19-hexaethylcalix[4]pyrrole)benzoaminoglyoxime (LH2) was synthesized from anti-chloroglyoxime and 3-aminophenyl-calix[4]pyrrole at room temperature. The mononuclear complexes {nickel(II), copper(II) and cobalt(II)} of this vic-dioxime ligand were prepared and their structures were confirmed by elemental analysis, IR and UV–Vis spectrophotometry, magnetic susceptibility; the MS, 1H and 13C NMR spectra of the LH2 ligand and its Ni(II) complex were also recorded. The experimental results indicated that the ligand:metal ratio was 2:1 in the cases of Ni(II), Cu(II) and Co(II) complexes as is with most vic-dioximes. Electrochemical properties of the ligand, and its complexes were investigated in DMSO solution by cyclic voltammetry at 200?mV?s?1 scan rate.  相似文献   

16.

3-Carboxylacetonehydroxamic acid (CAHA) and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV-Vis and IR spectra and magnetic susceptibility. The pK a1 and pK a2 values of the ligand in aqueous solution were found to be 6.5 ± 0.1 and 8.6 ± 0.1, which correspond to dissociation of carboxyl and hydroxamic protons, respectively. The dianion CAH acts as a tetradentate ligand through the hydroxamate and carboxylate groups and coordinates to the divalent metal ions, forming coordination polymers with a metal-to-ligand ratio of 1 : 1 in the solid state. FTIR spectra and thermal decomposition of the ligand and its metal complexes were recorded and briefly discussed. The electrochemical behavior of the complexes was investigated by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, the iron(II) and copper(II) cations form stable complex species with a metal-to-ligand ratio of 1 : 2 in solution. The iron(II), cobalt(II) and nickel(II) complexes show two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo quasi-reversible and reversible electrode reactions, respectively. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

17.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

18.
Two new complexes, [Co(L)2]Cl·(MeOH)2 (1) and [Ni(L)2]4·EtOH (2) (L?=?(E)-2-(amino((pyridin-2-ylmethylene)amino)methylene)maleonitrile), were synthesized and characterized by X-ray crystallography, IR, UV, and fluorescence spectroscopy. According to X-ray crystallographic studies, each metal was six-coordinate with six nitrogens from two ligands. Both complexes form two-dimensional supramolecular networks via hydrogen bonding and π–π interactions. Ultraviolet and visible spectra showed that absorptions arise from π–π ?, MLCT, and dd electron transitions. Fluorescence spectroscopy revealed moderate intercalative binding of these two complexes with EB–DNA, with apparent binding constant (K app) values of 9.14?×?105 and 3.20?×?105?M?1 for Co(III) and Ni(II) complexes, respectively. UV–visible absorption spectra showed that the absorption of DNA at 260?nm was quenched for 2 but quenched then improved for 1 with addition of complexes, tentatively attributed to the effect of the combined intercalative binding and electrostatic interaction for 1.  相似文献   

19.
以二茂铁亚甲基三氮唑为配体,通过与金属离子的自组装得到了两个新的二茂铁基功能配合物:[Cd(tmf)2(SCN)2]n (1) 和 [Ni(tmf)4(SCN)2] (2) (tmf =二茂铁亚甲基三氮唑)。其中,配合物1呈一维链状结构;配合物2是一个通过氢键作用而形成的二维超分子。三阶非线性光学性质测试结果表明,配合物1(n2 = 2.11 × 10-11 esu)和2(n2 = 1.92 × 10-11 esu)的三阶非线性光学折射效应与配体tmf(n2 = 2.49 ×10-11 esu)接近,说明配合物1和2的三阶非线性光学性质主要受配体控制。循环伏安法(CV)测试结果显示,这两个配合物在电极上的氧化还原过程是受扩散控制的。计时电流法(CA)和计时电量法(CC)测得配合物1的扩散系数比配合物2的扩散系数小。  相似文献   

20.
Abstract

The EPR spectra of single crystals of 63Cu(II) doped N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(sal)2en] and 7-methyl-N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(7-me sal)2en] have been studied. The usual doublet spin-Hamiltonian parameters for the complexes have been found to be: Cu(II)[(sal)2en]; g z =2.192 ± 0.002; g x =2.046 ± 0.004; g y =2.049 ± 0.004; A z =201.0 × 10?4 cm?1; A x =29.3 × 10?4 cm?1; A y =31.3 × 10?4 cm?1; AN z =12.6 × 10?4 cm?1; A N x =14.5 × 10?4 cm?1; A N y =15.7 × 10?4 cm?1; A H z =6.3 × 10?4 cm?1; A H x =7.3 × 10?4 cm?1; A H y =7.9 × 10?4 cm?1; Cu(II)[(7-me sal)2en]; g z =2.189 ± 0.002; g x =2.037 ± 0.004; g y =2.046 ± 0.004; A z =203.0 × 10?4 cm?1; A x =36.9 × 10?4 cm?1; A y =22.7 × 10?4 cm?1; A N z =12.6 × 10?4 cm?1; A N x =13.3 × 10?4 cm?1; A N y =14.0 × 10?4 cm?1. Values of molecular orbital coefficients calculated for these complexes show that their bonding properties are similar to those of other compounds of this type. There is considerable covalency in the metal-ligand [sgrave]-bonds, and significant in-plane pi-bonding is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号