首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five picolinato zinc(II) and cadmium(II) complexes, [Zn(ntb)(pic)]ClO4·CH3OH·2H2O (1), [Zn(bbma)(pic)]NO3·2CH3OH (2), [Cd(ntb)(pic)]ClO4·0.75CH3OH·H2O (3), [Cd2(bbma)2(pic)2](ClO4)2 (4), and [Cd2(bbp)(bbp-H)(pic)2(C2H5OH)]ClO4 (5), have been synthesized, where pic is the anion of picolinic acid, ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine, and bbp is 2,6-bis(benzimidazol-2-yl)pyridine. All the complexes were characterized by X-ray single-crystal diffraction, elemental analysis, IR, fluorescence spectroscopy, and thermal gravimetric analysis. 13 are mononuclear complexes in which picolinate adopts a N,O-chelating mode. 4 is a symmetrical dinuclear complex bridged by two anti-parallel picolinates in a N,O,O-coordination mode. 5 is also a dinuclear complex in which only one picolinate is a bridge. A 1-D double chain is formed by extensive H-bonds and ππ stacking in 1, while single zigzag chains are formed in 5. Complexes 24 all exhibit 63-hcb 2-D frameworks. They extend to form four-connected 66-dia 3-D topological nets for 2 and 4 and five-connected 46·64-bnn 3-D topological nets for 3. The five complexes show emission maxima in the blue region in the solid state.  相似文献   

2.
Two new mononuclear cobalt(II) complexes [Co(ntb)(pic)](ClO4) · (CH3OH)2.35 (1) and [Co(ntb)(nic)](ClO4) · CH3OH (2) were synthesized and structurally characterized, where ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid, and nic is the anion of nicotinic acid. The X-ray analysis indicates that the Co(II) center is six-coordinate in distorted octahedral and five-coordinate in distorted trigonal bipyramidal geometry for 1 and 2, respectively. In 1, the picolinate anion coordinates to Co(II) in a bidentate μ2-N,O chelating mode. In 2, the nicotinate anion coordinates with Co(II) through a monodentate carboxylate oxygen. 1-D chain structures were formed by intermolecular hydrogen bonds in the two complexes and π–π interactions are important for the stabilization of the structures.  相似文献   

3.
Two picolinate-containing nickel(II) complexes [Ni(bbma)(pic)(H2O)]ClO4 · CH3OH (1) and [Ni(ntb)(pic)]Cl · CH3OH · 3H2O (2) were synthesized and characterized by infrared, elemental analysis, UV-Vis, and X-ray diffraction analyses, where bbma is bis(benzimidazol-2-yl-methyl)amine, ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid. X-ray analysis shows that both complexes are mononuclear with picolinate coordinated to Ni(II) in a μ2-N,O chelating mode. Both complexes adopt distorted octahedral geometry. Intermolecular N–H ··· O and O–H ··· O hydrogen bonds and π–π interactions in 1 and 2 are important in stabilization of the crystal structures.  相似文献   

4.
Two new complexes, [Co(L)2]Cl·(MeOH)2 (1) and [Ni(L)2]4·EtOH (2) (L?=?(E)-2-(amino((pyridin-2-ylmethylene)amino)methylene)maleonitrile), were synthesized and characterized by X-ray crystallography, IR, UV, and fluorescence spectroscopy. According to X-ray crystallographic studies, each metal was six-coordinate with six nitrogens from two ligands. Both complexes form two-dimensional supramolecular networks via hydrogen bonding and π–π interactions. Ultraviolet and visible spectra showed that absorptions arise from π–π ?, MLCT, and dd electron transitions. Fluorescence spectroscopy revealed moderate intercalative binding of these two complexes with EB–DNA, with apparent binding constant (K app) values of 9.14?×?105 and 3.20?×?105?M?1 for Co(III) and Ni(II) complexes, respectively. UV–visible absorption spectra showed that the absorption of DNA at 260?nm was quenched for 2 but quenched then improved for 1 with addition of complexes, tentatively attributed to the effect of the combined intercalative binding and electrostatic interaction for 1.  相似文献   

5.
Cd(ΙΙ) and Cu(II) complexes of an acyclic pentadentate Schiff base were prepared by template condensation of two equivalents of 2-acetylpyridine with one equivalent of bis(3-aminopropyl)amine in methanol. The resulting complexes [CdL(NO3)]ClO4 (1) and [CuL](ClO4)2 · CH3CN (2) were characterized by X-ray crystallography, elemental analysis, IR and mass spectrometry in both cases and by NMR in the case of 1. The X-ray crystallographic structure determination of these complexes revealed six-coordinate distorted octahedral geometry for 1, with the sixth coordination by nitrate and five-coordinate for 2 with trigonal-bipyramidal Cu(II).  相似文献   

6.
The angular polytopic dipyridyl ligand 2,6-bis(quinoline-2-carboxamido)pyridine (H2L) was prepared. Assemblies of H2L with ZnAc2 and HgAc2 resulted in two new dinuclear complexes [Zn2(L)(Ac)2]?·?1.5H2O?·?0.5CH3OH (1) and [Hg2(L)(Ac)2]?·?5H2O?·?CH3OH (2) where the doubly deprotonated L2? bi-chelate as μ-kN,N′?:?kN″,N″′, bridging the two metal centers (Ac?=?acetate). In 1, the two Zn(II) ions are also doubly bridged by two Ac ions in a μ-kO?:?kO′ coordination, and thus each metal center adopts a distorted tetrahedral geometry. In 2, each Ac ion is only terminal to Hg(II), in a rare distorted triangular or T-shaped coordination geometry. Free H2L, 1, and 2 emit interesting bluish-green fluorescence with strong intensities. Thermogravimetric analysis of 1 shows that the dinuclear structure of 1 is stable to 382°C.  相似文献   

7.
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = ?0.95 cm?1.  相似文献   

8.
The 2-picolylpalladium(II) complex [{Pd(CH2Py)Cl(PPh3)}2] (CH2Py=2-picolyl) (I), prepared from 2-picolyl chloride and [Pd(PPh3)4], was treated with lithium bromide, silver acetate, 4-picoline (pic) and silver perchlorate, thallium acetylacetonate{Tl(acac)}, sodium dimenthyldithiocarbamate-water-(1/2) {Na(dmdc). 2 H2O}, and 1,2-bis(diphenylphospino)ethane (dppe) to yield [{PdBr(CH2Py)(PPh3)}2] (II), [{Pd(CH2Py)OAc(PPh3)}2] (III), [{Pd(Ch2Py)(pic)(PPh3)}2](ClO4)2 (IV), [Pd(CH2Py)(acac)(PPh3)] (V), [Pd(CH2Py)(dmdc)(PPh3)] (VI), and [Pd(Ch2Py)Cl(dppe)] (VII), respectively. Halogen abstraction from VII using silver perchlorate afforded an ionic complex [{Pd(CH2Py)(dppe)}2](ClO4)2 (VIII). It was concluded that the 2-picolyl groups in these eight complexes are σ-bonded to palladium, and that in the dinuclear complexes I, II, III, IV, and VIII, they serve as bridging ligands.  相似文献   

9.
A new oxamido-bridged dinuclear compound [Cu2(µ-pmox)(DMF)4]?·?2ClO4 (1) (H2pmox?=?N,N′-bis-(2-methylpyridyl)oxalamide, DMF?=?dimethylformamide) was synthesized and structurally characterized. The five-coordinate Cu(II) is bridged by oxamido groups and further cross-linked by C–H···O hydrogen bonds between the uncoordinated oxygen of perchlorate and methyl of DMF. The complex was also characterized by infrared spectroscopy and magnetic measurement. The copper complex exhibits strong antiferromagnetic interactions via the trans oxamido bridge with J of ?414?cm?1, where J is the exchange parameter in the isotropic Hamiltonian H?=??JS1S2.  相似文献   

10.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-5-valeric acid (Hpmva) and bis(2-pyridylmethyl)amino-6-caproic acid (Hpmca), react with copper(II) perchlorate to give rise to the carboxylated bridged chain complexes {[Cu(μ-pmva)(H2O)](ClO4)}n (1) and {[Cu(μ-pmca)(H2O)](ClO4)}n (2). These complexes have been characterized by X-ray crystallography, spectroscopic, and variable-temperature magnetic susceptibility measurements. In 1 and 2, each of the copper(II) ions exhibit CuN3O2 coordination environments with the three nitrogen atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal position and a water molecule coordinated in the axial position. The electronic spectra of the complexes are significantly affected by the coordination geometry. Magnetic susceptibility measurements indicate that complexes exhibit very weak ferromagnetic interactions.  相似文献   

11.
Several new copper(I) complexes of a group of bidentate bithiazole ligands have been isolated. The compounds prepared are bis(2,2′-dimethyl-4,4′-bithiazole)copper(I) perchlorate ([Cu(me-b)2]ClO4), bis(4,4′-dimethyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(me-i)2]ClO4), bis(2,2′-diphenyl-4,4′-bithiazole) copper(I) perchlorate ([Cu(ph-b)2]ClO4), bis(4,4′-diphenyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(ph-i)2]ClO4), bis(4,4′,5,5′-tetraphenyl-2,2′-bithiazole)-copper(I) perchlorate ([Cu(ph4-i)2]ClO4, bis(2,2′-bithiazole)copper(l) perchlorate ([Cu(i)2]CIO4), 2,2′-bithiazolecopper(I) perchlorate ([Cu(i)ClO4), (2,2′-bithiazole)bis(triphenylphosphinesulfide)copper(I) perchlorate ([Cu(i)(SPph3)2]ClO4,(2,2′-bithiazole)bis-( triphenylphosphine)copper(I) perchlorate ([Cu(i)(Pph3)2]ClO4), and (4,4′-bithiazole)bis(triphenylphosphine) copper(I) perchlorate ([Cu(b)(Pph3)2]ClO4). Several synthetic techniques were required including one developed in this work which involved the conversion of [Cu(Pph3)4]ClO4 into the thiophosphine complex by reaction with sulfur and subsequent use of this as a labile precursor complex. Optical spectra of the complexes indicate extensive solution dissociation. Several of the complexes ([Cu(ph-b)2]ClO4, [Cu(ph-i)2]CIO4, and [Cu(i)(Pph3]ClO4) were photoluminescent in the solid; one ([Cu(ph-b)2]ClO4) showed extensive loss of emission during irradiation. Most of the complexes prepared here appear to bind through the thiazole nitrogen atoms. However, infrared evidence suggests that in two of the complexes thiazole sulfur atoms participate in the bonding.  相似文献   

12.
Three dinuclear copper(II) complexes, [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN), [Cu2(L2)2(μ-ox)](ClO4)2?H2O, and [Cu2(L3)2(μ-ox)](ClO4)2 where ox = oxalato; L = N,N-dimethyl,N′-benzylethane-1,2-diamine, L1, N,N-diethyl,N′-benzylethane-1,2-diamine, L2, N,N-diisoprophyl,N′-benzylethane-1,2-diamine, L3, were prepared and characterized by elemental analyses, spectral (IR, UV–Vis) data and molar conductance measurements. The crystal structures of [Cu2(L1)2(μ-ox)](ClO4)2?2(CH3CN) and [Cu2(L3)2(μ-ox)](ClO4)2 have been determined by single-crystal X-ray analysis. Solvatochromic behaviors were investigated in various solvents, showing positive solvatochromism. The effect of steric hindrance around the copper ion imposed by N-alkyl groups of the diamine chelates on the solvatochromism property of the complexes is discussed. Solvatochromism was also studied with different solvent parameter models using stepwise multiple linear regression method.  相似文献   

13.
A new series of complexes of transition metal (Cu, Zn, Ni) perchlorate with imidazole have been synthesized and characterized by elemental analysis, infrared (IR), UV-Vis spectroscopy, and single-crystal X-ray diffraction. Based on elemental and spectral data, the complexes are M(C3H4N2) x (ClO4)2 (M?=?Cu, Zn, x?=?4; M?=?Ni, x?=?6; C3H4N2?=?imidazole). The crystal structures of Cu(C3H4N2)4(ClO4)2 (1) and Zn(C3H4N2)4(ClO4)2 (2) show metals surrounded by four nitrogens of imidazole, while the nickel complex Ni(C3H4N2)6(ClO4)2 (3) has six nitrogens of imidazole. Intra- and inter-molecular hydrogen bonds exist between hydrogen of imidazole and oxygen of perchlorate. The thermal stabilities of 1, 2, and 3 at different heating rates (β?=?5°C?min?1, 10°C?min?1, and 15°C?min?1) show that all the complexes exhibit two thermal decomposition stages; the sequence of thermal stability is 2?>?1?>?3. 1, 2, 3, and imidazole display DNA binding ability, ascertained by UV-Vis titration.  相似文献   

14.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

15.
The reaction of Cu(ClO4)2·6H2O and Cd(ClO4)2 with di-(2-picolyl)sulfur (dps) leads to the formation of mononuclear complexes [Cu(dps)(H2O)(ClO4)](ClO4) (1) and [Cd(dps)2](ClO4)2 (2). The crystal structure of 1 exhibits a distorted square pyramidal geometry, coordinated by one sulfur and two nitrogen atoms from the dps ligand, one water molecule and one perchlorate oxygen atom. For 2, the environment around cadmium atom is in a distorted octahedron with four nitrogen and two sulfur atoms from the dps ligand. Cyclic voltammetric data show that complexes undergo two waves of a one-electron transfer corresponding to M(II)/M(III) and M(II)/M(I) processes. Spectral and electrochemical behaviors of the complexes are also discussed.  相似文献   

16.
Two new complexes, trans-[MnL2(NCS)2] (1) and trans-[CoL2(H2O)(EtOH)](ClO4)2?·?H2O (2) with asymmetrical triaryltriazole ligands [L?=?3-(p-chlorophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole], have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray diffraction. In the complexes each L adopts a chelating bidentate mode via the nitrogen of pyridyl and triazole. Both complexes have a similar distorted octahedral core with two NCS? ions in the trans position in 1, while one H2O and one EtOH are present in the axial sites in 2.  相似文献   

17.
Two pyrazole-based polydentate ligands, 1,3-bis(5-methyl-3-phenylpyrazol-1-yl)-propan-2-ol (Hmppzpo) and 1,3-bis(5-methyl-3-p-isopropylphenylpyrazol-1-yl)-propan-2-ol (Hmcpzpo), have been synthesized. A third ligand, 1,3-bis(3,5-dimethylpyrazol-1-yl)-propan-2-ol (Hdmpzpo), has been synthetically modified. Seven new M(II) coordination compounds of general formula M2L2X2 (M?=?Zn, Ni; X?=?NO3 or ClO4; L?=?dmpzpo, mppzpo or mcpzpo) or MLX (M?=?Pd; L?=?dmpzpo; X?=?Cl) were synthesized and structurally characterized by elemental analysis and FT-IR analysis. The crystal structures of [Zn2(μ-dmpzpo-O,N,N′)2(NO3)2]?·?2H2O (1?·?2H2O), [Ni2(μ-dmpzpo-O,N,N′)2(CH3CN)2](ClO4)2 (2) and Pd(μ-dmpzpo-N,N′)Cl2 (4) were determined by single-crystal X-ray crystallography. The crystal structures show that complexes 1?·?2H2O and 2 are center-symmetric dinuclear compounds, with two metal ions bridged by two alkoxo groups and each metal ion with a distorted square-pyramidal environment. The palladium complex, 4, displayed square-planar coordination geometry around the Pd(II) ion with trans arrangement.  相似文献   

18.
Acetate and perchlorate dinuclear metal complexes of Co(II), Cu(II) and Zn(II) with the cresolate polypodal ligand having mixed phenolate and pyridyl pendant functionalities, H3L, have been synthesized. The complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV–Vis spectroscopy, magnetic studies and conductivity measurements. Crystal structures of H3L, [Cu2(HL)(OAc)(H2O)2](OAc)·1.5H2O and [Zn2L(CH3OH)3](ClO4)CH3OH·2H2O complexes, have been also determined.  相似文献   

19.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

20.
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号