首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for modeling infrared solvent shifts using the electrostatic field generated by the solvent is presented. The method is applied to the amide I vibration of N-methyl acetamide. Using ab initio calculations the fundamental frequency, anharmonicity, and the transition dipoles between the three lowest vibrational states are parametrized in terms of the electrostatic field. The generated map, which takes into account the electric field and its gradients at four molecular positions, is tested in a number of common solvents. Agreement of solvent shift and linewidths with experimental Fourier transform infrared (FTIR) data is found to within seven and four wave numbers, respectively, for polar solvents. This shows that in these solvents electrostatic contributions dominate solvation effects and the map is transferable between these types of solvents. The effect of motional narrowing arising from the fast solvent fluctuations is found to be substantial for the FTIR spectra. Also the two-dimensional infrared (2DIR) spectra, simulated using the constructed map, reproduce experimental results very well. The effect of anharmonicity fluctuations on the 2DIR spectra was found to be negligible.  相似文献   

2.
An anharmonic vibrational Hamiltonian for the amide I, II, III, and A modes of N-methyl acetamide (NMA), recast in terms of the 19 components of an external electric field and its first and second derivative tensors (electrostatic DFT map), is calculated at the DFT(BPW91/6-31G(d,p)) level. Strong correlations are found between NMA geometry and the amide frequency fluctuations calculated using this Hamiltonian together with the fluctuating solvent electric field obtained from the MD simulations in TIP3 water. The amide I and A frequencies are strongly positively correlated with the C=O and N-H bond lengths. The C=O and C-N amide bond lengths are negatively correlated, suggesting the solvent-induced fluctuations of the contribution of zwitterionic resonance form. Sampling the global electric field in the entire region of the transition charge densities (TCDs) is required for accurate infrared line shape simulations. Collective electrostatic solvent coordinates which represent the fluctuations of the 10 lowest amide fundamental and overtone states are reported. Normal-mode analysis of an NMA-3H(2)O cluster shows that the 660 cm(-1) to 1100 cm(-1) oscillation found in the frequency autocorrelation functions of the amide modes may be ascribed to the two bending vibrations of intermolecular hydrogen bonds with the amide oxygen of NMA.  相似文献   

3.
Kwac and Cho [J. Chem. Phys. 119, 2247 (2003)] have recently developed a combined electronic structure/molecular dynamics approach to vibrational spectroscopy in liquids. The method involves fitting ab initio vibrational frequencies for a solute in a cluster of solvent molecules to a linear combination of the electrostatic potentials on the solute atoms due to the charges on the solvent molecules. These authors applied their method to the N-methylacetamide-D/D(2)O system. We (S. A. Corcelli, C. P. Lawrence, and J. L. Skinner, [J. Chem. Phys. 120, 8107 (2004)]) have recently explored a closely related method, where instead of the electrostatic potential, the solute vibrational frequencies are fit to the components of the electric fields on the solute atoms due to the solvent molecules. We applied our method to the HOD/D(2)O and HOD/H(2)O systems. In order to make a direct comparison of these two approaches, in this paper we apply their method to the water system, and our method to the N-methylacetamide system. For the water system we find that the electric field method is superior to the potential approach, as judged by comparison with experiments for the absorption line shape. For the N-methylacetamide system the two methods are comparable.  相似文献   

4.
IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.  相似文献   

5.
Development of a new methodology for the study of both shape and surface tension of conducting drops in an electric field is presented. This methodology, called axisymmetric drop shape analysis-electric fields (ADSA-EF), generates numerical drop profiles in an electrostatic field, for a given surface tension. Then, it calculates the true value of the surface tension by matching theoretical profiles to the shape of experimental drops, using the surface tension as an adjustable parameter. ADSA-EF can be employed to simulate and study drop shapes in the electric field and to determine its effect on liquid surface tension. The method can also be used to measure surface tension in microgravity, where current drop-shape techniques are not applicable. The axisymmetric shape of the drop is the only assumption made in the development of ADSA-EF. The new scheme is applicable when both gravity and electrostatic forces are present. Preliminary measurements using ADSA-EF suggest that the surface tension of water increases by about 2% when an electric field with the magnitude of 10(6) V/m is applied.  相似文献   

6.
A combined electronic structure/molecular dynamics approach was used to calculate infrared and isotropic Raman spectra for the OH or OD stretches of dilute HOD in D2O or H2O, respectively. The quantities needed to compute the infrared and Raman spectra were obtained from density functional theory calculations performed on clusters, generated from liquid-state configurations, containing an HOD molecule along with 4-9 solvent water molecules. The frequency, transition dipole, and isotropic transition polarizability were each empirically related to the electric field due to the solvent along the OH (or OD) bond, calculated on the H (or D) atom of interest. The frequency and transition dipole moment of the OH (or OD) stretch of the HOD molecule were found to be very sensitive to its instantaneous solvent environment, as opposed to the isotropic transition polarizability, which was found to be relatively insensitive to environment. Infrared and isotropic Raman spectra were computed within a molecular dynamics simulation by using the empirical relationships and semiclassical expressions for the line shapes. The line shapes agree well with experiment over a temperature range from 10 to 90 degrees C.  相似文献   

7.
Structure and dipole moments of the two distinct solvated forms of p-nitroaniline (pNA) in acetonitrile/CCl4 have been studied by infrared electroabsorption spectroscopy. We measured a series of infrared electroabsorption spectra of pNA dissolved in an acetonitrile/CCl4 mixed solvent by altering the angle chi between the external electric field and the electric field vector of the incident infrared light. A singular value decomposition analysis has revealed that the observed infrared electroabsorption spectra are decomposed into two major components: the chi-dependent and chi-independent components. The decomposed spectral components as well as the infrared absorption spectrum are well explained in terms of two distinct solvated forms of pNA that exist in equilibrium in the mixed solvent. These solvated forms can be assigned to the 1:1 and 1:2 species, which have one and two acetonitrile molecule(s), respectively, associated with pNA. From a least-squares fitting analysis of the chi-dependent spectral component, it is shown that, for both the 1:1 and 1:2 species, a head-to-tail structure accounts well for the experimental results. On the other hand, the chi-independent component is likely to arise from the population change between the two solvated forms. This electric-field-induced population change of solvated forms may lead to the control of dielectric environments in solution by an external electric field.  相似文献   

8.
Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as B1 and B2 states) of myoglobin have been experimentally indicated. In this study, ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation of CO in myoglobin was carried out to investigate the two possible B states. Our results demonstrate that the B1 and B2 states correspond to Fe…CO (with carbon atom closer to iron center of heme) and Fe…OC (with oxygen atom closer to Fe), by comparing with the experimental infrared spectrum. QM electrostatic polarization effect on CO brought from the protein and solvent environment is the main driving force, which anchors CO in two distinctive orientations and hinders its rotation. The calculated vibrational frequency shift between the state B1 and B2 is 13.1 cm-1, which is in good agreement with experimental value of 11.5 cm-1. This study also shows that the electric field produced by the solvent plays an important role in assisting protein functions by exerting directional electric field at the active site of the protein. From residue-based electric field decomposition, several residues were found to have most contributions to the total electric field at the CO center, including a few charged residues and three adjacent uncharged polar residues (namely, HIS64, ILE107, and PHE43). This study provides new physical insights on rational design of enzyme with higher electric field at the active site.  相似文献   

9.
We have investigated effects of pressure and solvents on infrared intensities of methyl and ethyl iodides in solutions using a hydrostatic high-pressure cell with synthetic diamond windows. We focused on the absolute intensity of the C-I stretching mode, which was measured in carbon disulfide solvent up to 300MPa and at 293K, and in n-hexane solvent at 298K. For comparison, we investigated the effect of solvents on the absorption intensity. Effects of pressure and solvents on the infrared intensity were analyzed using two electrostatic models, which assume the shape of solute cavity as sphere or spheroid. The latter model is approximately in agreement with both effects on the intensity, particularly, for the pressure effect. This paper demonstrated that the electrostatic model taking the shape of the cavity into account is useful to explain the medium effect on the infrared intensity and also suggests that more improved models could provide information of the solvation structure from the medium effect on the infrared intensity.  相似文献   

10.
A change in an infrared intensity in dielectric media is treated by an electrostatic model. The basic model is originally formalized for a dipolar liquid. The model is satisfactorily applied to the infrared intensity of the C-H stretching of chloroform, which changes 22 times large in the liquid state at -43 degrees C as in the gaseous state. A change in the infrared intensity in lithium ammonium tartrate, where a ferroelectric phase transition takes place, is analyzed on the basis of a local polarization above T(c) or a spontaneous polarization below T(c), deducing important quantities on a phase transition. A difference in the infrared intensity of the C-Br stretching of 1,10-dibromodecane between the urea clathrate and the crystalline state is analyzed by evaluating electric fields due to bond moments and oscillating dipoles. These analyses confirm the mechanism of the change in the absolute infrared intensity, which originates from an electrostatic interaction with an electric field applied to a molecule or a functional group closely related to a normal mode.  相似文献   

11.
The solvent molecular distribution significantly affects the behavior of the solute molecules and is thus important in studying many biological phenomena. It can be described by the solvent molecular density distribution, g, and the solvent electric dipole distribution, p. The g and p can be computed directly by counting the number of solvent molecules/dipoles in a microscopic volume centered at r during a simulation or indirectly from the mean force F and electrostatic field E acting on the solvent molecule at r, respectively. However, it is not clear how the g and p derived from simulations depend on the solvent molecular center or the solute charge and if the g(F) and p(E) computed from the mean force and electric field acting on the solvent molecule, respectively, could reproduce the corresponding g and p obtained by direct counting. Hence, we have computed g, p, g(F), and p(E) using different water centers from simulations of a solute atom of varying charge solvated in TIP3P water. The results show that g(F) and p(E) can reproduce the g and p obtained using a given count center. This implies that rather than solving the coordinates of each water molecule by MD simulations, the distribution of water molecules could be indirectly obtained from analytical formulas for the mean force F and electrostatic field E acting on the solvent molecule at r. Furthermore, the dependence of the g and p distributions on the solute charge revealed provides an estimate of the change in g and p surrounding a biomolecule upon a change in its conformation.  相似文献   

12.
The electrostatic stabilization of colloidal dispersions is usually considered the domain of polar media only because of the high energetic cost associated with introducing electric charge in nonpolar environments. Nevertheless, some surfactants referred to as "charge control agents" are known to raise the conductivity of liquids with low electric permittivity and to mediate charge stabilization of nonpolar dispersions. Here we study an example of the particularly counterintuitive charging and electrostatic interaction of colloidal particles in a nonpolar solvent caused by nonionic surfactants. PMMA particles in hexane solutions of nonionic sorbitan oleate (Span) surfactants are found to exhibit a field-dependent electrophoretic mobility. Extrapolation to zero field strength yields evidence for large electrostatic surface potentials that decay with increasing surfactant concentration in a fashion reminiscent of electrostatic screening caused by salt in aqueous solutions. The amount of surface charge and screening ions in the nonpolar bulk is further characterized via measurements of the particles' pair interaction energy. The latter is obtained by liquid structure analysis of quasi-2-dimensional equilibrium particle configurations studied with digital video microscopy. In contrast to the behavior reported for systems with ionic surfactants, we observe particle charging and a screened Coulomb type interaction both above and below the surfactant's critical micelle concentration.  相似文献   

13.
A novel zero electric field gradient nematic liquid crystal made up from two nematic liquid crystal components is employed as a solvent for a series of molecules ranging from small molecules to mesogens themselves. Nuclear magnetic resonance is used to determine the degree of order of the solute and solvent molecules. Results are compared to those obtained for two completely different zero electric field gradient nematic mixtures. The comparison strongly indicates that for a variety of molecules largely differing in size, shape and flexibility their degree of order can be described by a single orientation mechanism. This mechanism can be adequately modelled by a simple phenomenological mean field model based on the size and shape anisotropy of the dissolved species. The use of zero electric field gradient mixtures in combination with this mean field model allows the prediction of solute order parameters at approximately the 10 per cent level.  相似文献   

14.
Solvatochromic vibrational frequency shifts of a few different infrared (IR) probe molecules have been studied by carrying out quantum chemistry calculations for a number of their water clusters. We are particularly focused on the vibrational solvatochromic and electrochromic effects on the CO, CN, and CF stretch modes in carbon monoxide, acetone, 4-cyanopyridine, p-tolunitrile, fluorobenzene, and 3-fluoropyridine. Using multiple interaction site antenna model, we show that their solvatochromic vibrational frequency shifts can be successfully described by considering spatially nonuniform electrostatic potential generated by the surrounding water molecules. It turns out that the CO and CF stretch mode frequencies are approximately proportional to the solvent electric field projected onto the bond axes, whereas the vibrational frequencies of the nitrile stretch mode in 4-cyanopyridine and p-tolunitrile are not. Consequently, it is confirmed that the vibrational Stark tuning rates of the CO and CF stretching modes can be directly used to describe their solvatochromic frequency shifts in condensed phases. However, the nitrile stretch mode frequency shift induced by solvent electrostatic potential appears to be more complicated than its electrochromic phenomenon. To examine the validity of the distributed interaction site model for solvatochromic frequency shifts of these vibrational chromophores, we thus calculated the vibrational Stark tuning rates of the CO, CN, and CF stretch modes and found that they are in good agreement with the experimental results found in literatures. This confirms that a collection of properly chosen distributed interaction sites can be an excellent electric antenna sensing local electrostatics that affects on vibrational frequencies of IR probe modes.  相似文献   

15.
Molecular dynamics simulations of electron and ion transfer reactions near a smooth surface are presented, analyzing the effect of the geometrical constraint of the surface and the interfacial electric field on the relevant solvation properties of both a monovalent negative ion and a neutral atom. The simulations show that, from the solvation point of view, ion adsorption is an uphill process due to the need to shed off the ion's solvation shell and displace water from the surface. Atom adsorption, on the other hand, has only a small barrier, related to the molecularity of the solvent. Both the electrostatic interaction of the ion with the solvent and the ion's solvent reorganization energy (the relevant parameter in the Marcus electron transfer theory) decrease as the surface is approached, whereas these parameters are not sensitive to the distance from the surface for the atom. This is a consequence of the importance of long-range electrostatic interactions for ion solvation and the importance of short-range interactions for atom solvation. The electric field either attracts or repels an ion to or from the surface, but the field has no influence on the solvent reorganization energy. By including the quantum-mechanical electron transfer between the metal surface and the ion/atom in solution in the MD simulation by using a model Hamiltonian, we calculated two-dimensional free energy surfaces for ion adsorption allowing for partial charge transfer, based on a fully molecular picture of ion solvation near the surface.  相似文献   

16.
Quantum chemical solvation models usually rely on the equilibrium solvation condition and is thus not immediately applicable to the study of nonequilibrium solvation dynamics, particularly those associated with chemical reactions. Here we address this problem by considering an effective Hamiltonian for solution-phase reactions based on an electrostatic potential (ESP) representation of solvent dynamics. In this approach a general ESP field of solvent is employed as collective solvent coordinate, and an effective Hamiltonian is constructed by treating both solute geometry and solvent ESP as dynamical variables. A harmonic bath is then attached onto the ESP variables in order to account for the stochastic nature of solvent dynamics. As an illustration we apply the above method to the proton transfer of a substituted phenol-amine complex in a polar solvent. The effective Hamiltonian is constructed by means of the reference interaction site model self-consistent field method (i.e., a type of quantum chemical solvation model), and a mixed quantum/classical simulation is performed in the space of solute geometry and solvent ESP. The results suggest that important dynamical features of proton transfer in solution can be captured by the present approach, including spontaneous fluctuations of solvent ESP that drives the proton from reactant to product potential wells.  相似文献   

17.
It is often implicitly assumed that the long-range intermolecular electrostatic interactions in homogeneous protein solutions either are negligible for affecting protein Brownian tumbling or cause its deceleration without changing the shape of rotational auto-correlation function. This review presents a wide set of experimental data (NMR relaxation, dielectric spectroscopy and Brownian dynamics simulations) demonstrating that the interprotein electrostatic steering leads to a complication of the rotational correlation function. The key point of this effect is the rotational anisotropy caused by the interaction of the electric dipole moment of a protein with the external electric field produced by charges of neighboring proteins. Taking this effect into account in some cases might be of critical importance for the correct interpretation of various experimental data.  相似文献   

18.
Lin YC  Li M  Wu CC 《Lab on a chip》2004,4(2):104-108
Simulation and experimental demonstration of the in vitro gene delivery enhancement using electrostatic forces and electroporation (EP) microchips were conducted. Electroporation is a technique with which DNA molecules can be delivered into cells using electric field pulses. This study demonstrates that plasmid DNA can be attracted to the cell surfaces at the specific regions using an electrostatic force. Therefore, the DNA concentration on the cell surface is dramatically increased, which highly enhances the gene transfection efficiency compared to that without an attracting-electric field. The electrostatic force can be designed into specific regions, where the DNA plasmids are attracted to, to provide the region-targeting function. In this micro-device, the top electrode and the interdigitated electrodes provided the DNA attracting-electric field, and the interdigitated electrodes provided adequate electric fields for the electroporation process on the chip surface. Using the EP microchip, cells could be manipulated in situ without detachment if adherent cells were used for electroporation. Five different cells of two different types, primary cell and cell line, were successfully transfected under multi-pulse or single pulse electric field stimulation without applying an attracting-electric field. This study simulated and analyzed the electric field distributions at the DNA attracting and electroporation processes, and successfully demonstrated that the electrostatic force attracted DNA plasmids to specific regions and highly enhanced the gene delivery. In summary, this EP microchip should provide many potential applications for gene therapy.  相似文献   

19.
We present a new approach that combines electronic structure methods and molecular dynamics simulations to investigate the infrared spectroscopy of condensed phase systems. This approach is applied to the OH stretch band of dilute HOD in liquid D2O and the OD stretch band of dilute HOD in liquid H2O for two commonly employed models of water, TIP4P and SPC/E. Ab initio OH and OD anharmonic transition frequencies are calculated for 100 HOD x (D2O)n and HOD x(H2O)n (n = 4-9) clusters randomly selected from liquid water simulations. A linear empirical relationship between the ab initio frequencies and the component of the electric field from the solvent along the bond of interest is developed. This relationship is used in a molecular dynamics simulation to compute frequency fluctuation time-correlation functions and infrared absorption line shapes. The normalized frequency fluctuation time-correlation functions are in good agreement with the results of previous theoretical approaches. Their long-time decay times are 0.5 ps for the TIP4P model and 0.9 ps for the SPC/E model, both of which appear to be somewhat too fast compared to recent experiments. The calculated line shapes are in good agreement with experiment, and improve upon the results of previous theoretical approaches. The methods presented are simple, and transferable to more complicated systems.  相似文献   

20.
Gaining insight into the water structure at the electrified phospholipid membranes/aqueous interface is vital and essential for elucidating the mechanism of many biochemical reactions, but still remains a formidable challenge. Herein, based on the superiority of surface enhanced infrared absorption (SEIRA) spectroscopy combined with electrochemistry in interfacial analysis, the evolution of local water structure at the zwitterionic phospholipid membranes/aqueous interface with an external electric field is revealed by means of ion perturbation. The strongly hydrogen‐bonded water directly bonded to the phosphate groups (PO2?) has a strong mechanical strength to resist potential perturbations, and that portion of water greatly affects the electrostatic properties of the phospholipid membranes. This study innovates the basic understanding of electric double layer (EDL) at the membranes/aqueous interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号