首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set EX, μE = 0 , for which
| f(x) - f(y) | \leqslant [ g(x) + g(y) ]h( d( x,y ) ), x,y ? X / E \left| {f(x) - f(y)} \right| \leqslant \left[ {g(x) + g(y)} \right]\eta \left( {d\left( {x,y} \right)} \right),\,x,y \in {{X} \left/ {E} \right.}  相似文献   

2.
The classical criterion of asymptotic stability of the zero solution of equations x′ = f(t, x) is that there exists a function V (t, x), a(∥x∥) ≤ V (t, x) ≤ b(∥x∥) for some a, bK such that [(V)\dot] \dot{V} (t, x) ≤ −c(∥x∥) for some cK. In this paper, we prove that if V(m + 1) \mathop {V}\limits^{(m + {1})} (t, x) is bounded on some set [tk − T, tk + T] × BH(tk → + as k → ∞), then the condition that [(V)\dot] \dot{V} (t, x) ≤ −c(∥x∥) can be weakened and replaced by that [(V)\dot] \dot{V} (t, x)  0 and  (−[(V)\dot] \dot{V} (tk, x)| + − [(V)\ddot] \ddot{V} (tk, x)| + ⋯ + − V(m) \mathop {V}\limits^{(m)} (tk, x)|) ≤ −c′(∥x∥) for some c′K. Moreover, the author also presents a corresponding instability criterion. [110]  相似文献   

3.
Given a (known) function f:[0,1]→(0,1), we consider the problem of simulating a coin with probability of heads f(p) by tossing a coin with unknown heads probability p, as well as a fair coin, N times each, where N may be random. The work of Keane and O’Brien (ACM Trans. Model. Comput. Simul. 4(2):213–219, 1994) implies that such a simulation scheme with the probability ℙ p (N<∞) equal to 1 exists if and only if f is continuous. Nacu and Peres (Ann. Appl. Probab. 15(1A):93–115, 2005) proved that f is real analytic in an open set S⊂(0,1) if and only if such a simulation scheme exists with the probability ℙ p (N>n) decaying exponentially in n for every pS. We prove that for α>0 noninteger, f is in the space C α [0,1] if and only if a simulation scheme as above exists with ℙ p (N>n)≤C(Δ n (p)) α , where \varDelta n(x):=max{?{x(1-x)/n},1/n}\varDelta _{n}(x):=\max\{\sqrt{x(1-x)/n},1/n\}. The key to the proof is a new result in approximation theory: Let B+n\mathcal{B}^{+}_{n} be the cone of univariate polynomials with nonnegative Bernstein coefficients of degree n. We show that a function f:[0,1]→(0,1) is in C α [0,1] if and only if f has a series representation ?n=1Fn\sum_{n=1}^{\infty}F_{n} with Fn ? B+nF_{n}\in \mathcal{B}^{+}_{n} and ∑ k>n F k (x)≤C(Δ n (x)) α for all x∈[0,1] and n≥1. We also provide a counterexample to a theorem stated without proof by Lorentz (Math. Ann. 151:239–251, 1963), who claimed that if some jn ? B+n\varphi_{n}\in\mathcal{B}^{+}_{n} satisfy |f(x)−φ n (x)|≤C(Δ n (x)) α for all x∈[0,1] and n≥1, then fC α [0,1].  相似文献   

4.
We prove that max |p′(x)|, where p runs over the set of all algebraic polynomials of degree not higher than n ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than ( n - 1 ) \mathord
/ \vphantom ( n - 1 ) ?{1 - x2} ?{1 - x2} {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} for all x ∈ (−1, 1) such that | x | ? èk = 0[ n \mathord/ \vphantom n 2 2 ] [ cos\frac2k + 12( n - 1 )p, cos\frac2k + 12np ] \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} .  相似文献   

5.
Let f∈Ap. For any positive integer l, the quantity Δ1,n−1(f:z) has been studied extensively. Here we give some quantitative estimates for and investigate some pointwise estimates of Δ l,n−1 (r) (f;z). Supported by National Science Foundation of China  相似文献   

6.
For β > 0 and an integer r ≥ 2, denote by [(H)\tilde]¥,br\tilde H_{\infty ,\beta }^r those 2π-periodic, real-valued functions f on ℝ, which are analytic in S β := {z: |Im z| < β} and satisfy the restriction |f (r)(z)|≤1, zS β . The optimal quadrature formulae about information composed of the values of a function and its kth (k = 1, ..., r − 1) derivatives on free knots for the classes [(H)\tilde]¥,br\tilde H_{\infty ,\beta }^r are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.  相似文献   

7.
Let L p , 1 ≤ p< ∞, be the space of 2π-periodic functions f with the norm || f ||p = ( ò - pp | f |p )1 \mathord
/ \vphantom 1 p p {\left\| f \right\|_p} = {\left( {\int\limits_{ - \pi }^\pi {{{\left| f \right|}^p}} } \right)^{{1 \mathord{\left/{\vphantom {1 p}} \right.} p}}} , and let C = L be the space of continuous 2π-periodic functions with the norm || f || = || f || = maxe ? \mathbbR | f(x) | {\left\| f \right\|_\infty } = \left\| f \right\| = \mathop {\max }\limits_{e \in \mathbb{R}} \left| {f(x)} \right| . Let CP be the subspace of C with a seminorm P invariant with respect to translation and such that P(f) \leqslant M|| f || P(f) \leqslant M\left\| f \right\| for every fC. By ?k = 0 Ak (f) \sum\limits_{k = 0}^\infty {{A_k}} (f) denote the Fourier series of the function f, and let l = { lk }k = 0 \lambda = \left\{ {{\lambda_k}} \right\}_{k = 0}^\infty be a sequence of real numbers for which ?k = 0 lk Ak(f) \sum\limits_{k = 0}^\infty {{\lambda_k}} {A_k}(f) is the Fourier series of a certain function f λL p . The paper considers questions related to approximating the function f λ by its Fourier sums S n (f λ) on a point set and in the spaces L p and CP. Estimates for || fl - Sn( fl ) ||p {\left\| {{f_\lambda } - {S_n}\left( {{f_\lambda }} \right)} \right\|_p} and P(f λS n (f λ)) are obtained by using the structural characteristics (the best approximations and the moduli of continuity) of the functions f and f λ. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function f. Bibliography: 11 titles.  相似文献   

8.
The present paper gives a converse result by showing that there exists a functionfC [−1,1], which satisfies that sgn(x)f(x) ≥ 0 forx ∈ [−1, 1], such that {fx75-1} whereE n (0) (f, 1) is the best approximation of degreen tof by polynomials which are copositive with it, that is, polynomialsP withP(x(f(x) ≥ 0 for allx ∈ [−1, 1],E n(f) is the ordinary best polynomial approximation off of degreen.  相似文献   

9.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

10.
Equivalences between the condition |P n (k) (x)|≦K(n −1√1−x 2+1/n 2) k n -a, whereP n(x) is the bestn-th degree polynomial approximation tof(x), and the Peetre interpolation space betweenC[−1,1] and the space (1−x 2) k f (2k)(x)∈C[−1,1] is established. A similar result is shown forE n(f)= ‖fP n C[−1,1]. Rates other thann -a are also discussed. Supported by NSERC grant A4816 of Canada.  相似文献   

11.
For an arbitrary fixed segment [α, β] ⊂ R and given rN, A r , A 0, and p > 0, we solve the extremal problem
òab | x(k)(t) |qdt ? sup,     q \geqslant p,   k = 0,   q \geqslant 1,    1 \leqslant k \leqslant r - 1, \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \,\,\,\,q \geqslant p,\,\,\,k = 0,\,\,\,q \geqslant 1,\,\,\,\,1 \leqslant k \leqslant r - 1,}  相似文献   

12.
Let G ì \mathbb C G \subset {\mathbb C} be a finite region bounded by a Jordan curve L: = ?G L: = \partial G , let W: = \textext[`(G)] \Omega : = {\text{ext}}\bar{G} (with respect to [`(\mathbb C)] {\overline {\mathbb C}} ), $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} , and let w = F(z) w = \Phi (z) be a univalent conformal mapping of Ω onto Δ normalized by $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 . By A p (G); p > 0; we denote a class of functions f analytic in G and satisfying the condition
|| f ||App(G): = òG | f(z) |pdsz < ¥, \left\| f \right\|_{Ap}^p(G): = \int\limits_G {{{\left| {f(z)} \right|}^p}d{\sigma_z} < \infty, }  相似文献   

13.
Suppose that $1 < p < \infty $1 < p < \infty , q=p/(p-1)q=p/(p-1), and for non-negative f ? Lp(-¥ ,¥)f\in L^p(-\infty\! ,\infty ) and any real x we let F(x)-F(0)=ò0xf(tdtF(x)-F(0)=\int _0^xf(t)\ dt; suppose in addition that ò-¥ F(t)exp(-|t|) dt=0\int\limits _{-\infty }^\infty F(t)\exp (-|t|)\ dt=0. Moser's second one-dimensional inequality states that there is a constant CpC_p, such that ò-¥ exp[a |F(x)|q-|x|]  dxCp\int\limits _{-\infty }^\infty \exp [a |F(x)|^q-|x|] \ dx\le C_p for each f with ||f||p £ 1||f||_p\le 1 and every a £ 1a\le 1. Moreover the value a = 1 is sharp. We replace the operation connecting f with F by a more general integral operation; specifically we consider non-negative kernels K(t,x) with the property that xK(t,x) is homogeneous of degree 0 in t, x. We state an analogue of the inequality above for this situation, discuss some applications and consider the sharpness of the constant which replaces a.  相似文献   

14.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

15.
Let f be an isometric embedding of the dual polar space ${\Delta = DQ(2n, {\mathbb K})}Let f be an isometric embedding of the dual polar space D = DQ(2n, \mathbb K){\Delta = DQ(2n, {\mathbb K})} into D¢ = DQ(2n, \mathbb K¢){\Delta^\prime = DQ(2n, {\mathbb K}^\prime)}. Let P denote the point-set of Δ and let e¢: D¢? S¢ @ PG(2n - 1, \mathbb K¢){e^\prime : \Delta^\prime \rightarrow {\Sigma^\prime} \cong {\rm PG}(2^n - 1, {{\mathbb K}^\prime})} denote the spin-embedding of Δ′. We show that for every locally singular hyperplane H of Δ, there exists a unique locally singular hyperplane H′ of Δ′ such that f(H) = f(P) ?H¢{f(H) = f(P) \cap H^\prime}. We use this to show that there exists a subgeometry S @ PG(2n - 1, \mathbb K){\Sigma \cong {\rm PG}(2^n - 1, {\mathbb K})} of Σ′ such that: (i) e¢°f (x) ? S{e^\prime \circ f (x) \in \Sigma} for every point x of D; (ii) e : = e¢°f{\Delta; ({\rm ii})\,e := e^\prime \circ f} defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.  相似文献   

16.
Let ξn −1 < ξn −2 < ξn − 2 < ... < ξ1 be the zeros of the the (n−1)-th Legendre polynomial Pn−1(x) and −1=xn<xn−1<...<x1=1, the zeros of the polynomial . By the theory of the inverse Pal-Type interpolation, for a function f(x)∈C [−1,1] 1 , there exists a unique polynomial Rn(x) of degree 2n−2 (if n is even) satisfying conditions Rn(f, ξk) = f (εk) (1 ⩽ k ⩽ n −1); R1 n(f,xk)=f1(xk)(1≤k≤n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f, x)} (n is even) and the main result of this paper is that if f∈C [1,1] r , r≥2, n≥r+2, and n is even then |R1 n(f,x)−f1(x)|=0(1)|Wn(x)|h(x)·n3−r·E2n−r−3(f(r)) holds uniformly for all x∈[−1,1], where .  相似文献   

17.
Consider the equation −Δu = 0 in a bounded smooth domain , complemented by the nonlinear Neumann boundary condition ∂ν u = f(x, u) − u on ∂Ω. We show that any very weak solution of this problem belongs to L (Ω) provided f satisfies the growth condition |f(x, s)| ≤ C(1 + |s| p ) for some p ∈ (1, p*), where . If, in addition, f(x, s) ≥ −C + λs for some λ > 1, then all positive very weak solutions are uniformly a priori bounded. We also show by means of examples that p* is a sharp critical exponent. In particular, using variational methods we prove the following multiplicity result: if N ∈ {3, 4} and f(x, s) =  s p then there exists a domain Ω and such that our problem possesses at least two positive, unbounded, very weak solutions blowing up at a prescribed point of ∂Ω provided . Our regularity results and a priori bounds for positive very weak solutions remain true if the right-hand side in the differential equation is of the form h(x, u) with h satisfying suitable growth conditions.  相似文献   

18.
Let ℂ[−1,1] be the space of continuous functions on [−,1], and denote by Δ2 the set of convex functions f ∈ ℂ[−,1]. Also, let E n (f) and E n (2) (f) denote the degrees of best unconstrained and convex approximation of f ∈ Δ2 by algebraic polynomials of degree < n, respectively. Clearly, En (f) ≦ E n (2) (f), and Lorentz and Zeller proved that the inverse inequality E n (2) (f) ≦ cE n (f) is invalid even with the constant c = c(f) which depends on the function f ∈ Δ2. In this paper we prove, for every α > 0 and function f ∈ Δ2, that
where c(α) is a constant depending only on α. Validity of similar results for the class of piecewise convex functions having s convexity changes inside (−1,1) is also investigated. It turns out that there are substantial differences between the cases s≦ 1 and s ≧ 2. Dedicated to Jóska Szabados on his 70th birthday  相似文献   

19.
Explicit formulas are obtained for the maximum possible values of the derivatives f (k)(x), x ∈ (−1, 1), k ∈ {0, 1, ..., r − 1}, for functions f that vanish together with their (absolutely continuous) derivatives of order up to ≤ r − 1 at the points ±1 and are such that $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 . As a corollary, it is shown that the first eigenvalue λ 1,r of the operator (−D 2) r with these boundary conditions is $ \sqrt 2 $ \sqrt 2 (2r)! (1 + O(1/r)), r → ∞.  相似文献   

20.
We are dealing with the first vanishing time for solutions of the Cauchy–Neumann problem for the semilinear parabolic equation t u − Δu + a(x)u q = 0, where a(x) \geqslant d0exp( - \fracw( | x | )| x |2 ) a(x) \geqslant {d_0}\exp \left( { - \frac{{\omega \left( {\left| x \right|} \right)}}{{{{\left| x \right|}^2}}}} \right) , d 0 > 0, 1 > q > 0, and ω is a positive continuous radial function. We give a Dini-like condition on the function ω which implies that any solution of the above equation vanishes in finite time. The proof is derived from semi-classical limits of some Schr¨odinger operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号