首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This article is devoted to the nonlinear Schrödinger equation when the parameter ε approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.  相似文献   

2.
We investigate experimentally the effect of aspect ratio ( ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of = 2 and 4 are tested in a 50 % by mass glycerin–water mixture, with a total rotation of ? = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the $\mathcal{Q}$ -criterion, helicity density, and spanwise quantities. For both s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ? = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ? = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the = 2 LEV is distinct from the TV and is similarly stable. The = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a “four-lobed” distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for = 4. The TV circulation for each is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.  相似文献   

3.
We consider the dynamics of N boson systems interacting through a pair potential N ?1 V a (x i ?x j ) where V a (x)=a ?3 V(x/a). We denote the solution to the N-particle Schrödinger equation by Ψ N, t . Recall that the Gross-Pitaevskii (GP) equation is a nonlinear Schrödinger equation and the GP hierarchy is an infinite BBGKY hierarchy of equations so that if u t solves the GP equation, then the family of k-particle density matrices solves the GP hierarchy. Under the assumption that a=N ?? for 0N→∞ the limit points of the k-particle density matrices of Ψ N, t are solutions of the GP hierarchy with the coupling constant in the nonlinear term of the GP equation given by ∫V(x)dx. The uniqueness of the solutions of this hierarchy remains an open question.  相似文献   

4.
The aim of this paper is to discuss the question of existence and multiplicity of strong local minimizers for a relatively large class of functionals : from a purely topological point of view. The basic assumptions on are sequential lower semicontinuity with respect to W1,p-weak convergence and W1,p-weak coercivity, and the target is a multiplicity bound on the number of such minimizers in terms of convenient topological invariants of the manifolds and .In the first part of the paper, we focus on the case where is non-contractible and proceed by establishing a link between the latter problem and the question of enumeration of homotopy classes of continuous maps from various skeleta of into . As this in turn can be tackled by the so-called obstruction method, it is evident that our results in this direction are of a cohomological nature.The second part is devoted to the case where =N and is a bounded smooth domain. In particular we consider integralswhere the above assumptions on can be verified when the integrand F is quasiconvex and pointwise p-coercive with respect to the gradient argument. We introduce and exploit the notion of a topologically non-trivial domain and under this establish the first existence and multiplicity result for strong local minimizers of that in turn settles a longstanding open problem in the multi-dimensional calculus of variations as described in [6].  相似文献   

5.
In this study, uncoated paper was characterized. Three-dimensional structure of the layer was reconstructed using imaging results of micro-CT scanning with a relatively high resolution \((0.9~\upmu \hbox {m})\). Image analysis provided the pore space of the layer, which was used to determine its porosity and pore size distribution. Representative elementary volume (REV) size was determined by calculating values of porosity and permeability values for varying domain sizes. We found that those values remained unchanged for domain sizes of \(400\times 400\times 150\,\upmu \hbox {m}^{3}\) and larger; this was chosen as the REV size. The determined REV size was verified by determining capillary pressure–saturation Open image in new window imbibition curves for various domain sizes. We studied the directional dependence of Open image in new window curves by simulating water penetration into the layer from various directions. We did not find any significant difference between Open image in new window curves in different directions. We studied the effect of compression of paper on Open image in new window curves. We found that up to 30% compression of the paper layer had very small effect on the Open image in new window curve. Relative permeability as a function of saturation was also calculated. Water penetration into paper was visualized using confocal laser scanning microscopy. Dynamic visualization of water flow in the paper showed that water moves along the fibers first and then fills the pores between them.  相似文献   

6.
We prove a stability result for a large class of unilateral minimality properties which arise naturally in the theory of crack propagation proposed by Francfort & Marigo in [14]. Then we give an application to the quasistatic evolution of cracks in composite materials. The main tool in the analysis is a Γ-convergence result for energies of the form where S(u) is the jump set of u and is a sequence of rectifiable sets with We prove that no interaction occurs in the Γ-limit process between the bulk and the surface part of the energy. Relying on this result, we introduce a new notion of convergence for (N−1)-rectifiable sets called σ-convergence, which is useful in the study of the stability of unilateral minimality properties.  相似文献   

7.
A continuous function is said to be infinity harmonic if it satisfies the PDEin the viscosity sense. In this paper we prove that infinity harmonic functions are continuously differentiable when n=2.  相似文献   

8.
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.  相似文献   

9.
The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.  相似文献   

10.
In this paper, the coupled extension and thickness- twist vibrations are studied for AT-cut quartz plates under Lateral Field Excitation (LFE) with variations along the x1- direction. Mindlin's two-dimensional equations are used for anisotropic crystal plates. Both free and electrically forced vibrations are considered. Important vibration characteristics are obtained, including dispersion relations, frequency spectra, and motional capacitances. It is shown that, to avoid the effects of the couplings between extension and thickness-twist vibrations, a series of discrete values of the length/thickness ratio of the crystal plate need to be excluded. The results are of fundamental significance for the design of LFE resonators and sensors.  相似文献   

11.
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.  相似文献   

12.
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.  相似文献   

13.
Molecular dynamics (MD) simulations are carried out to characterize the mechanical and thermal responses of -oriented ZnO nanobelts with lateral dimensions of 21.22 Å×18.95 Å, 31.02 Å × 29.42 Å and 40.81Å × 39.89 Å over the temperature range of 300-1000 K. The Young's modulus and thermal conductivity of the nanobelts are evaluated. Significant surface effects on properties due to the high- surface-to-volume ratios of the nanobelts are observed. For the mechanical response, surface-stress-induced internal stress plays an important role. For the thermal response, surface scattering of phonons dominates. Calculations show that the Young's modulus is higher than the corresponding value for bulk ZnO and decreases by ~ 33% as the lateral dimensions increase from 21.22 Å × 18.95 Å to 40.81 Å × 39.89 Å. The thermal conductivity is one order of magnitude lower than the corresponding value for bulk ZnO single crystal and decreases with wire size. Specifically, the conductivity of the 21.22 Å × 18.95 Å belt is approximately (31-18)% lower than that of the 40.81 Å × 39.89 Å belt over the temperature range analyzed. A significant dependence of properties on temperature is also observed, with the Young's modulus decreasing on average by 12% and the conductivity decreasing by 50% as temperature increases from 300 K to 1000 K.  相似文献   

14.
In this paper we show that every solution of the three-dimensional exterior Navier-Stokes boundary-value problem, corresponding to a given non-zero, constant velocity at infinity (flow past a body) and belonging to a very general functional class, , can be determined by a finite number of parameters. Our results extend the analogous classical results by Foiaş & Temam [6, 7], and by Jones & Titi [14] for the interior problem. This extension is by no means trivial, in that all fundamental tools used in the case of the interior problem – such as compactness of the Sobolev embeddings, Poincaré's inequality, and the special basis constituted by eigenfunctions of the Stokes operator – are no longer available for the exterior problem. An important consequence of our results is that any solution in is uniquely determined by the knowledge of the associated velocity field only ``near' the boundary. Just how ``near' it has to be depends only on the Reynolds number and on the body. Dedicated to John Heywood on the occasion of his 65th birthday  相似文献   

15.
It has shown that altering crosslink density of biopolymers will regulate the morphology of Mesenchymal Stem Cells (MSCs) and the subsequent MSCs differentia- tion. These observations have been found in a wide range of biopolymers. However, a recent work published in Nature Materials has revealed that MSCs morphology and differen- tiation was unaffected by crosslink density of polydimethyl- siloxane (PDMS), which remains elusive. To understand such unusual behaviour, we use nanoindentation tests and modelling to characterize viscoelastic properties and sur- face adhesion of PDMS with different base:crosslink ratio varied from 50:1 (50D) to 10:1 (10D). It has shown that lower crosslink density leads to lower elastic moduli. De- spite lower nanoindentation elastic moduli, PDMS with lowest crosslink density has higher local surface adhesion which would affect cell-biomaterials interactions. This work suggests that surface adhesion is likely another important physical cue to regulate cell-biomaterials interactions.  相似文献   

16.
An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.  相似文献   

17.
The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.  相似文献   

18.
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.  相似文献   

19.
Frequency domain fundamental solutions for a poroelastic half-space   总被引:1,自引:0,他引:1  
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.  相似文献   

20.
In this work, the stability of a flexible thin cylindrical workpiece in turning is analyzed. A process model is derived based on a finite element representation of the workpiece flexibility and a nonlinear cutting force law. Repeated cutting of the same surface due to overlapping cuts is modeled with the help of a time delay. The stability of the so obtained system of periodic delay differential equations is then determined using an approximation as a time-discrete system and Floquet theory. The time-discrete system is obtained using the semi-discretization method. The method is implemented to analyze the stability of two different workpiece models of different thicknesses for different tool positions with respect to the jaw end. It is shown that the stability chart depends on the tool position as well as on the thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号