首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This work aims to demonstrate the analytical solution of the Grad-Shafranov (GS) equation or generalized Ampere’s law, which is important in the studies of self-consistent 2.5-D solution for current sheet structures. A detailed mathematical development is presented to obtain the generating function as shown by Walker (RSPSA 91, 410, 1915). Therefore, we study the general solution of the GS equation in terms of the Walker’s generating function in details without omitting any step. The Walker’s generating function g(ζ) is written in a new way as the tangent of an unspecified function K(ζ). In this trend, the general solution of the GS equation is expressed as exp(??2Ψ) =?4|K (ζ)|2/cos2[K(ζ) ? K(ζ ?)]. In order to investigate whether our proposal would simplify the mathematical effort to find new generating functions, we use Harris’s solution as a test, in this case K(ζ) = arctan(exp(i ζ)). In summary, one of the article purposes is to present a review of the Harris’s solution. In an attempt to find a simplified solution, we propose a new way to write the GS solution using g(ζ) = tan(K(ζ)). We also present a new analytical solution to the equilibrium Ampere’s law using g(ζ) = cosh(b ζ), which includes a generalization of the Harris model and presents isolated magnetic islands.  相似文献   

2.
Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group G. In this paper, we study the geometric quantization of the symplectic quotient M // G. Guillemin and Sternberg [Invent. Math. 67, 515–538 (1982)] have shown, under suitable regularity assumptions, that there is a natural invertible map between the quantum Hilbert space over M //G and the G-invariant subspace of the quantum Hilbert space over M.Reproducing other recent results in the literature, we prove that in general the natural map of Guillemin and Sternberg is not unitary, even to leading order in Planck’s constant. We then modify the quantization procedure by the “metaplectic correction” and show that in this setting there is still a natural invertible map between the Hilbert space over M // G and the G-invariant subspace of the Hilbert space over M. We then prove that this modified Guillemin–Sternberg map is asymptotically unitary to leading order in Planck’s constant. The analysis also shows a good asymptotic relationship between Toeplitz operators on M and on M // G.  相似文献   

3.
We establish some general theorems for the existence and nonexistence of ground state solutions of steady-state N coupled nonlinear Schrödinger equations. The sign of coupling constants β ij ’s is crucial for the existence of ground state solutions. When all β ij ’s are positive and the matrix Σ is positively definite, there exists a ground state solution which is radially symmetric. However, if all β ij ’s are negative, or one of β ij ’s is negative and the matrix Σ is positively definite, there is no ground state solution. Furthermore, we find a bound state solution which is non-radially symmetric when N=3.  相似文献   

4.
Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.  相似文献   

5.
We use the representation theory of \({\mathcal{N}=2}\) superconformal algebra to study the elliptic genera of Calabi–Yau (CY) D-folds. We compute the entropy of CY manifolds from the growth rate of multiplicities of the massive (non-BPS) representations in the decomposition of their elliptic genera. We find that the entropy of CY manifolds of complex dimension D behaves differently depending on whether D is even or odd. When D is odd, CY entropy coincides with the entropy of the corresponding hyperKähler (D ? 3)-folds due to a structural theorem on Jacobi forms. In particular, we find that the Calabi–Yau 3-fold has a vanishing entropy. At D > 3, using our previous results on hyperKähler manifolds, we find \({S_{CY_D}\sim 2\pi \sqrt{\frac{(D-3)^2}{2(D-1)}n}}\). When D is even, we find the behavior of CY entropy behaving as \({S_{CY_D}\sim 2 \pi\sqrt{\frac{D-1}{2}n}}\). These agree with Cardy’s formula at large D.  相似文献   

6.
Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm–Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line \(\mathbb {R}\) in a simultaneous way and go to infinity within the upper half plane \(\mathbb {H}\), an ordinary differential equation describing time evolution of the conformal map \(g_t(z)\) was derived in the \(N \rightarrow \infty \) limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on \(\mathbb {R}\) studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner’s semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner’s semicircle law determines the time evolution of the SLE hull, \(K_t \subset \mathbb {H}\cup \mathbb {R}\), in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from \(a>0\) and another half of slits start from \(-a < 0\), and determine the multiple SLE in the hydrodynamic limit. After reporting these exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull \(K_t\) in the hydrodynamic limit.  相似文献   

7.
The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O(n3) with the traditional decomposition approach to O(n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the (n-k)-uniform hypergraph state.  相似文献   

8.
The effect of mesons f 0(975) (named as f), ?(1020) (named as ?) and δ on the moment of inertia of the PNS PSR J0348+0432 is examined in the framework of the relativistic mean field theory considering the baryon octet. It is found that the energy density ε and pressure p will increase considering the mesons δ whereas will decrease as the mesons f and ? being considered. When the mesons f,? and δ are considered, the energy density and pressure will all decrease. It is also found that the contribution of mesons f, ? and δ to the central energy density is only the central energy density’s 0.06 ~0.6% whereas the contribution of mesons f, ? and δ to the central pressure is the central pressure’s 4 ~7%. For the radius, it will decrease when the contributions of mesons f, ? and δ are considered. The moment of inertia I will increase considering the mesons δ whereas will decrease as the mesons f and ? being considered. When the mesons f, ? and δ are all considered, the moment of inertia will decrease. It is found that the contribution of mesons f and ? to moment of inertia is 4 ~9 times larger than that of mesons δ. Our results show that the mesons f, ? and δ contribute to the moment of inertia’s 2 ~5%.  相似文献   

9.
The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke’s law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.  相似文献   

10.
Based on the work of Itzykson and Zuber on Kontsevich’s integrals, we give a geometric interpretation and a simple proof of Zhou’s explicit formula for the Witten–Kontsevich tau function. More precisely, we show that the numbers \(A_{m,n}^\mathrm{Zhou}\) defined by Zhou coincide with the affine coordinates for the point of the Sato Grassmannian corresponding to the Witten–Kontsevich tau function. Generating functions and new recursion relations for \(A_{m,n}^\mathrm{Zhou}\) are derived. Our formulation on matrix-valued affine coordinates and on tau functions remains valid for generic Grassmannian solutions of the KdV hierarchy. A by-product of our study indicates an interesting relation between the matrix-valued affine coordinates for the Witten–Kontsevich tau function and the V-matrices associated with the R-matrix of Witten’s 3-spin structures.  相似文献   

11.
We describe the “Feynman diagram” approach to nonrelativistic quantum mechanics on \({\mathbb{R}^n}\), with magnetic and potential terms. In particular, for each classical path γ connecting points q 0 and q 1 in time t, we define a formal power series V γ (t, q 0, q 1) in \({\hbar}\), given combinatorially by a sum of diagrams that each represent finite-dimensional convergent integrals. We prove that exp(V γ ) satisfies Schrödinger’s equation, and explain in what sense the \({t \to 0}\) limit approaches the δ distribution. As such, our construction gives explicitly the full \({\hbar\to 0}\) asymptotics of the fundamental solution to Schrödinger’s equation in terms of solutions to the corresponding classical system. These results justify the heuristic expansion of Feynman’s path integral in diagrams.  相似文献   

12.
Quantum electrodynamics with non-vanishing photon mass is written down in interaction representation. To apply the Wick decomposition formalism of theS-matrix one can introduce an indefinite metricη, similar to that of Gupta-Bleuler's quantum electrodynamics with vanishing photon mass. It will be shown that the complementary photons can be eliminated from the formalism with the help of the subsidiary condition. By a succeeding unitary transformation allx-singularities (x=photon mass) can be removed. The limiting processx→0, which then becomes possible, leads to the well-known so-called ‘reduced’ theory of quantum electrodynamics. A physical interpretation of this limiting process will be tried using, as a simple example, the radiation of an electric dipole.  相似文献   

13.
We prove that the maximum number N c of non-relativistic electrons that a nucleus of charge Z can bind is less than 1.22Z + 3Z 1/3. This improves Lieb’s upper bound N c  < 2Z + 1 Lieb (Phys Rev A 29:3018–3028, 1984) when Z ≥ 6. Our method also applies to non-relativistic atoms in magnetic field and to pseudo-relativistic atoms. We show that in these cases, under appropriate conditions, \({\limsup_{Z \to \infty}N_c/Z \le 1.22}\).  相似文献   

14.
Near the critical temperature of a superconducting transition, the energy of the threshold perturbation δFthr that transfers a superconducting bridge to a resistive state at a current below the critical current Ic has been determined. It has been shown that δFthr increases with a decrease in the length of a bridge for short bridges with lengths L < ξ (where ξ is the coherence length) and is saturated for long bridges with L ? ξ. At certain geometrical parameters of banks and bridge, the function δFthr(L) at the current I → 0 has a minimum at L ~ (2–3)ξ. These results indicate that the effect of fluctuations on Josephson junctions made in the form of short superconducting bridges is reduced and that the effect of fluctuations on bridges with lengths ~(2–3)ξ is enhanced.  相似文献   

15.
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch’s algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f(x). So we have another noisy function g(x). The relation between them is g(x) = f(x) ± O(??). Here O(??) ? 1 is the noise term. The goal is to determine the noisy function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.  相似文献   

16.
We study two relevant characterizations of a commutative positive operator valued measure (POVM) F. The first one is a Choquet type of an integral representation. It introduces a measure ν on the space of the projection valued measures (PVMs) and describes F as an integral over this space. The second one represents a commutative POVM F as the randomization of a single PVM E by means of a Markov kernel μ. We show that one can be derived from the other. We also elaborate upon some previous results on Choquet’s representation of Markov kernels and find a functional relationship between ν and μ. Finally, we analyze some relevant particular cases and provide some physically relevant examples which include the unsharp position observables.  相似文献   

17.
A Schrödinger type equation for a mathematical probability amplitude Ψ(x,t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V(x). The particle phase space probability density is denoted Q(x,p,t), and the entire system is immersed in the “vacuum” zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on \(\hbar \), and the zero-point electromagnetic spectral distribution, given by \(\rho _{0}{(\omega )} = \hbar \omega ^{3}/2 \pi ^{2} c^{3}\), also depends on \(\hbar \), it is interesting to verify the possible dynamical connection between ρ0(ω) and the Schrödinger equation. We shall prove that the Planck’s constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ0(ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton’s effect.  相似文献   

18.
In this paper we investigate the relation between weak convergence of a sequence \(\left\{ \mu_{n}\right\} \) of probability measures on a Polish space S converging weakly to the probability measure μ and continuous, norm-bounded functions into a Banach space X. We show that, given a norm-bounded continuous function f:SX, it follows that \(\lim_{n\to\infty}\int_{S}f\, d\mu_{n}=\int_{S}f\, d\mu\)—the limit one has for bounded and continuous real (or complex)—valued functions on S. This result is then applied to the stability theory of Feynman’s operational calculus where it is shown that the theory can be significantly improved over previous results.  相似文献   

19.
We calculate the Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation C(2n, 3) using the Schläfli formula for the generalized Chern–Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee’s methods. As an application, we calculate the Chern–Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.  相似文献   

20.
Dielectric relaxation studies of binary (jk) polar mixtures of tetrahydrofuran with N-methyl acetamide, N,N-dimethyl acetamide, N-methyl formamide and N,N-dimethyl formamide dissolved in benzene(i) for different weight fractions (w j k ’s) of the polar solutes and mole fractions (x j ’s) of tetrahydrofuran at 25 °C are attempted by measuring the conductivity of the solution under 9.90 GHz electric field using Debye theory. The estimated relaxation time (τ j k ’s) and dipole moment (μ j k ’s) agree well with the reported values signifying the validity of the proposed methods. Structural and associational aspects are predicted from the plot of τ j k and μ j k against x j of tetrahydrofuran to arrive at solute–solute (dimer) molecular association upto x j =0.3 of tetrahydrofuran and thereafter solute–solvent (monomer) molecular association upto x j =1.0 for all systems except tetrahydrofuran + N,N-dimethyl acetamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号