首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
采用Kolinski等建立的类蛋白质分子的格点模型,通过计算类蛋白质分子的末端距分布函数P(r)来研究类蛋白质分子形成紧密接触对的速率k .发现不同的氨基酸序列,其分布函数P(r)不同.对于序列(H) x和(P) x,分布函数P(r)有二个峰值;而对于序列(HP) x,分布函数P(r)只有一个峰值.对于类蛋白质分子形成紧密接触对的速率k ,当链长N <11,随着N的增加而增加;当N >11,形成紧密接触对的速率k随着N的增加而减少,这个趋势与实验结果一致,并存在关系k~N-α(N >11) ,系数α与氨基酸序列有关.这些研究能够帮助我们加深对蛋白质结构形成的了解.  相似文献   

2.
An improved configurational-confomational statistical method is developed and the mean-square radius of gyration for atactic poly(α-methylstyrene)(PαMS)chains is studied,in which the effect of large side groups is considered. The deduced formulas,based on the rotational isomer state theory,are used to investigate the configuration-dependent properties of the atactic polymer chain,and the statistical correlation of the unperturbed polymer chain dimension and structure parameters are calculated.For the fraction of meso dyads w_m=0.4,the dependence of the radius of gyration R_g and the intrinsic viscosity[η]on the molecule mass M are R_g=2.63×10~(-2) M~(0.50) nm and[η]=7.36×10~(-2) M~(0.497),respectively, which are in agreement with the previous experimental data for the PαMS samples.A small hump is detected in the curve of the characteristic ratio of the unperturbed mean-square radius of gyration versus the chain length for short PαMS chains.The R_g increases linearly with the temperature T,and the effects of the chain length and the tacticity on the temperature coefficient are remarkable.These are quite different from the results for PαMS chains not considering side groups or for the monosubstituted polystyrene chain.  相似文献   

3.
Adsorption of short two-dimensional compact chains confined in the double attractive parallel planar boundaries is investigated by using enumeration calculation method in this paper. First, we calculate the chain size and shape of adsorbed compact chains, such as mean-square end-to-end distance per bond R2/N, mean-square radii of gyration per bond S2x/N and S2y/N, shape factor δ and fraction of adsorbed segments fa to illuminate that how the size and shape of adsorbed compact chains changes during the process of tensile elongation. There are some special behaviors in the chain size and shape for strong attraction interaction. In the meantime, compact chains can reach to the stable state with large distance between two parallel boundaries D. On the other hand, some thermodynamic properties, such as average energy per bond, Helmholtz free energy per bond, elastic force f and energy contribution to elastic fU are also investigated in order to study the elastic behavior of compact chains adsorbed on the double attractive parallel planar boundaries. These investigations may provide some insights into the thermodynamic behaviors of adsorbed compact chains.  相似文献   

4.
We investigate the kinetics of loop formation in ideal flexible polymer chains (the Rouse model), and polymers in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo, Schulten, and Schulten, that the time scale for cyclization is tau(c) approximately tau(0)N(2) (where tau(0) is a microscopic time scale and N is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation results accurately when a, the capture radius for contact formation, exceeds b, the average distance between two connected beads. Simulations also show that when a < b, tau(c) approximately N(alpha)(tau), where 1.5 < alpha(tau) < or = 2 in the range 7 < N < 200 used in the simulations. By using a diffusion coefficient that is dependent on the length scales a and b (with a < b), which captures the two-stage mechanism by which looping occurs when a < b, we obtain an analytic expression for tauc that fits the simulation results well. The kinetics of contact formation between the ends of the chain are profoundly effected when interactions between monomers are taken into account. Remarkably, for N < 100, the values of tau(c) decrease by more than 2 orders of magnitude when the solvent quality changes from good to poor. Fits of the simulation data for tau(c) to a power law in N (tau(c) approximately N(alpha)(tau)) show that alpha(tau) varies from about 2.4 in a good solvent to about 1.0 in poor solvents. The effective exponent alpha(tau) decreases as the strength of the attractive monomer-monomer interactions increases. Loop formation in poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-like mechanism of the ends of the chain. The time for contact formation between beads that are interior to the chain in good solvents changes nonmonotonically as the loop length varies. In contrast, the variation in interior loop closure time is monotonic in poor solvents. The implications of our results for contact formation in polypeptide chains, RNA, and single-stranded DNA are briefly outlined.  相似文献   

5.
The elastic behavior of protein-like chains was investigated by using the Pruned-Enriched-Rosenbluth Method (PERM).Three typical protein-like chains such as all-α,all-β,and α+β(α/β) proteins were studied in our modified orientation dependent monomer-monomer interaction (ODI) model.We calculated the ratio of /N and shape factor <δ*> of protein-like chains in the process of elongation.In the meantime,we discussed the average energy per bond <U>/N,average contact energy per bond <U>c/N,average helical energy per bond <U>h/N and average sheet energy per bond <U>b/N.Three maps of contact formation,α-helix formation,β-sheet formation were depicted.All the results educe a view that the helix structure is the most stable structure,while the other two structures are easy to be destroyed.Besides,the average Helmholtz free energy per bond <A>/Nis was presented.The force f obtained from the free energy was also discussed.It was shown that the chain extended itself spontaneously first.The force was studied in the process of elongation.Lastly,the energy contribution to elastic force fu was calculated too.It was noted that fu for all-β chains increased first,and then decreased with x0 increasing.  相似文献   

6.
In this paper, we estimate the rate of contact formation between two residues in the interior of the proteins using the Szabo, Schulten, and Schulten formula with the probability distribution P(r) based on 375 proteins from PDB (Protein Data Bank). The probability distribution for residue pair in proteins is different from the Gaussian distribution, especially for short distance between two residues in proteins. The rate of contact formation in the interior of protein is discussed as a function of distance n (=|j-i|) between two residues, and it decreases monotonically with n and follows the scaling relationship of k∞n-γwithγ= 1.43 for the contact radius a= 0.40 nm andγ= 1.05 for a = 0.50 nm. The diffusion coefficient for the relative diffusion of two residues in the interior of proteins is estimated as D = 6.4×10-6 cm2/s, which is close to the result that is found for monomer diffusion.  相似文献   

7.
A Monte Carlo study of the distribution functions for the end-to-end distance and radius of gyration for hard-sphere models of poly(glycine) and poly(L-alanine) random coils has been conducted in the chain-length range n = 3 to 100 monomer units for both unperturbed chains and chains perturbed by long-range interactions (excluded volume effects). The distribution functions for the radius of gyration in all cases have been very precisely calculated, those for the perturbed end-to-end distance less precisely, and those for the unperturbed end-to-end distance least precisely. Empirical distribution functions of the form W(p) = ap-b exp(-cp-d) for the reduced end-to-end distance p = r/"r-2"-one-half and a similar form for the reduced radius of gyration could be least-squares fit to the Monte Carlo data. The expansion factors alpha-r and alpha-s were calculated vs. chain length and were used to test various versions of the two-parameter theory of the excluded volume effect. To be consistent with the chain-length dependence of alpha-r and alpha-s as determined by the Monte Carlo calculations, each of these theories required two different binary cluster integrals, a beta-r based on alpha-r and a beta-s based on alpha-s, both of which were strongly chain-length dependent. Both of these results suggest that the two-parameter theory is not applicable to the models used in this study. It was also found that, except for very short chain lengths, plots of ln alphs-r vs. ln n were linear, and thus that alpha-r could be estimated for long chain lengths. Comparison of these estimates with the experimental data on four polypeptide chains in one-earth solvents that the hard-sphere models used in this study yield expansion factors that do not seriously overestimate the magnitude of the excluded volume effect.  相似文献   

8.
The Daniels-type distribution functions of the end-to-end distance of three-dimensional and two-dimensional wormlike chains are obtained to terms of order t?10, by an operational method with use of a digital computer, where t is the ratio of the total chain contour length to the Kuhn segment length in three-dimensional cases and of the contour length to the persistence length in two-dimensional cases. The convergence of the ring-closure probability and the mean reciprocal distance is examined on the basis of these distribution functions. A similar study of the moment-based distribution functions is also made.  相似文献   

9.
马定洋  章林溪 《高分子学报》2008,(11):1055-1060
采用相互作用自回避行走(interacting self-avoiding walks,ISAWS)模型研究了一端固定的紧密高分子链在拉伸过程中的低温相变行为,观察到在拉伸过程中当温度T<0.1时平均拉力会出现一个震荡,随着温度的升高这种震荡现象又渐渐消失,这是由于紧密高分子链在低温时类似于β折叠的"冻结构象"被拉开而引起的.比较吸附条件下和无吸附作用下平均拉力、自由能以及相变行为的差别,发现在吸附条件下在拉伸的初始阶段为了克服表面吸附的相互作用,拉力会出现一个峰.吸附作用也使得外界作用到高分子链上的实际有效拉力减小,造成崩塌相态(collapsed phase)区域面积减少.另外发现在吸附条件下平均拉力还受温度变化的影响.在拉伸的初期由于单体间存在体积排除效应,平均拉力是随着温度的升高而降低,随着拉伸的深入当末端距到达一定长度时平均拉力是随着温度的升高而增加.并同Kumar等人在不考虑吸附作用下拉伸紧密高分子链得到的结果进行了比较.这些研究对于进一步研究外力诱导下吸附紧密高分子的相变有一定的参考价值.  相似文献   

10.
A fundament of classical rubber elasticity theory is the Gaussian chain approximation formula, P(n,r) for the probability distribution of end-to-end distances of a polymer chain composed of n beads. It is considered to provide a realistic distribution of end-to-end distances, r, provided that the length of the polymer chain is much greater than its average end-to-end distance. By considering the number of beads (n) to be the independent variable, we can use P(n,r) to construct the probability distributions of network chain lengths, for fixed r. Since the network crosslinks reduce the probability for the occurrence of longer chains, the formula must be modified by a correction factor that takes this effect into account. We find that, both the shape of the n-probability distribution, its height, and the position of the peak vary significantly with r. We provide a numerical procedure for constructing networks that respect these distributions. The algorithm was implemented in a three-dimensional, random polymer-and-node network model to construct polyisoprene networks at two common crosslink densities. Although the procedure does not constrain the density, we find that the networks constructed have densities very close to the measured bulk density.  相似文献   

11.
The SAW tail chains were studied. The permitted conformational number and the mean square end-to-end distance as a function of the chain length N for such a model tail chain were obtained by computer simulations, including the exact enumeration and Monte Carlo method. These two basic quantities obeyed the relations deduced from the scaling law. The critical exponents and the lattice indexes were given by fitting the data of the computer experiments. It has been shown that there is a certain extension in the size of the SAW tail chains as well as the NRW tail chains in the direction normal to the wall. The normal component of the mean square end-to-end distance is almost twice as large as the parallel component of the short chain SAW. However, as N →∞, the effect of the wall on the chain conformation becomes a little weak because of the self-avoiding behavior for the model. That is quite different from the case of the NRW tail chain. Project supported by the National Natural Science Foundation of China  相似文献   

12.
采用PERM(pruned-enriched Rosenbluth method)算法,研究了吸附在界面附近的紧密高分子链力学行为.发现当界面的吸附能比较大时,紧密高分子链从紧贴于吸附界面到逐渐远离的过程中,其外形会经历4种典型的变化.同时紧密高分子链的尺寸大小如/N、xy/N、z/N,形状参数<δ*>,热力学性质如每个键的平均自由能A/N,平均相互作用能/N等,甚至所受外力的大小都会同时做出相应的变化,其出现变化的位置也一致.特别是随着紧密高分子链离开吸附界面的过程中,作用于高分子链上的外力明显出现几个力学平台,这与实验得到的结果完全一致.同时还研究了弱吸附能的情况,在这种情况下实验是很难进行的.  相似文献   

13.
从 6 0种球形蛋白质的结构出发 ,采用Miyazawa Jernigan相互作用矩阵 ,计算了蛋白质分子中氨基酸之间的相互作用能 .发现构成蛋白质分子的 2 0种氨基酸可分成疏水 (Hydrophobic ,H)、中性 (Neutral,N)、亲水(Hydrophilic ,P)基团 .在计算它们之间相互作用能的基础上 ,建立了蛋白质分子的HNP格点模型 .用这个模型计算了二维蛋白质分子在自然态 (Nativestate)时的构象性质 .同时研究了氨基酸序列为HHNHNPNHPP HPNPPHPHPPHHPHNH的折叠过程 ,得到其基态能量为 - 6 4 89RT .这能为研究球形蛋白质的构象性质及折叠过程提供一种更合理的格点模型  相似文献   

14.
We perform molecular-dynamics simulations for polymer melts of the coarse-grained poly(vinyl alcohol) model that crystallizes upon slow cooling. To establish the properties of its high temperature, liquid state as a reference point, we characterize in detail the structural features of equilibrated polymer melts with chain lengths 5 ≤ N ≤ 1000 at a temperature slightly above their crystallization temperature. We find that the conformations of sufficiently long polymers with N > 50 obey essentially the Flory's ideality hypothesis. The chain length dependence of the end-to-end distance and the gyration radius follow the scaling predictions of ideal chains and the probability distributions of the end-to-end distance, and form factors are in good agreement with those of ideal chains. The intrachain correlations reveal evidences for incomplete screening of self-interactions. However, the observed deviations are small. Our results rule out any preordering or mesophase structure formation that are proposed as precursors of polymer crystallization in the melt. Moreover, we characterize in detail primitive paths of long entangled polymer melts and we examine scaling predictions of Rouse and the reptation theory for the mean squared displacement of monomers and polymers center of mass. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1376–1392  相似文献   

15.
We report the formation of liquid crystalline (LC) phases of short double-stranded DNA with nonpairing (nonsticky) overhangs, confined between two-dimensional (2D) lipid bilayers of cationic liposome-DNA complexes. In a landmark study (Science2007, 318, 1276), Nakata et al. reported on the discovery of strong end-to-end stacking interactions between short DNAs (sDNAs) with blunt ends, leading to the formation of 3D nematic (N) and columnar LC phases. Employing synchrotron small-angle X-ray scattering, we have studied the interplay between shape anisotropy-induced and DNA end-to-end interaction-induced N ordering for 11, 24, and 48 bp sDNA rods with single-stranded oligo-thymine (T) overhangs modulating the end-to-end interactions. For suppressed stacking interactions with 10-T overhangs, the volume fraction of sDNA at which the 2D isotropic (I)-to-N transition occurs for 24 and 48 bp sDNA rods depended on their length-to-width (L/D) shape anisotropy, qualitatively consistent with Onsager's theory for the entropic alignment of rigid rods. As the overhang length is reduced from 10 to 5 and 2 T for 24 and 48 bp sDNA, the N-to-I transition occurs at lower volume fractions, indicating the onset of some degree of end-to-end stacking interactions. The 11 bp sDNA rods with 5- and 10-T overhangs remain in the I phase, consistent with their small shape anisotropy (L/D ≈ 1.9) below the limit for Onsager LC ordering. Unexpectedly, in contrast to the behavior of 24 and 48 bp sDNA, the end-to-end interactions between 11 bp sDNA rods with 2-T overhangs set in dramatically, and a novel 2D columnar N phase (N(C)) with finite-length columns formed. The building blocks of this phase are comprised of 1D stacks of (on average) four 11 bp DNA-2T rods with an effective L(stacked)/D ≈ 8.2. Our findings have implications for the DNA-directed assembly of nanoparticles on 2D platforms via end-to-end interactions and in designing optimally packed LC phases of short anisotropic biomolecules (such as peptides and short-interfering RNAs) on nanoparticle membranes, which are used in gene silencing and chemical delivery.  相似文献   

16.
The conformational properties and elastic behaviors of protein-like single chains in the process of tensile elongation were investigated by means of Monte Carlo method. The sequences of protein-like single chains contain two types of residues: hydrophobic (H) and hydrophilic (P). The average conformations and thermodynamics statistical properties of protein-like single chains with various elongation ratio λ were calculated. It was found that the mean-square end-to-end distance r increases with elongation ratio,λ. The tensor eigenvalues ratio of : decreases with elongation ratio λ for short (HP)x protein-like polymers, however, the ratio of : increases with elongation ratioλ,especially for long (H)x sequence. Average energy per bond increases with elongation ratioλ, especially for(H)x protein-like single chains. Helmholtz free energy per bond also increases with elongation ratioλ. Elastic force (f), energy contribution to force (fU) and entropy contribution to force (fs) for different protein-like single chains were also calculated.These investigations may provide some insights into elastic behaviors of proteins.  相似文献   

17.
Side chains of amino acid residues are the determining factor that distinguishes proteins from other unstable chain polymers. In simple models they are often represented implicitly (e.g., by spin states) or simplified as one atom. Here we study side chain effects using two-dimensional square lattice and three-dimensional tetrahedral lattice models, with explicitly constructed side chains formed by two atoms of different chirality and flexibility. We distinguish effects due to chirality and effects due to side chain flexibilities, since residues in proteins are L residues, and their side chains adopt different rotameric states. For short chains, we enumerate exhaustively all possible conformations. For long chains, we sample effectively rare events such as compact conformations and obtain complete pictures of ensemble properties of conformations of these models at all compactness region. This is made possible by using sequential Monte Carlo techniques based on chain growth method. Our results show that both chirality and reduced side chain flexibility lower the folding entropy significantly for globally compact conformations, suggesting that they are important properties of residues to ensure fast folding and stable native structure. This corresponds well with our finding that natural amino acid residues have reduced effective flexibility, as evidenced by statistical analysis of rotamer libraries and side chain rotatable bonds. We further develop a method calculating the exact side chain entropy for a given backbone structure. We show that simple rotamer counting underestimates side chain entropy significantly for both extended and near maximally compact conformations. We find that side chain entropy does not always correlate well with main chain packing. With explicit side chains, extended backbones do not have the largest side chain entropy. Among compact backbones with maximum side chain entropy, helical structures emerge as the dominating configurations. Our results suggest that side chain entropy may be an important factor contributing to the formation of alpha helices for compact conformations.  相似文献   

18.
We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls.The non-adsorption case of adsorption interaction energyε=0 and the weak adsorption case ofε=-1 are considered for the compact polymer chains with different chain lengths N and different separation distances between two walls D.Several special entropy effects on the confined compact polymer chains,such as a damped oscillation in the segment density profile for the large separation distance D,are observed and discussed for different separation distances D in the non-adsorption case.In the weak adsorption case,investigations on the segment density profiles indicate that the competition between the entropy and adsorption effects results in an obvious depletion layer.Moreover,the scaling laws of the damped oscillation period T_d and the depletion layer width L_d are obtained for the confined compact chains.Most of these results are obtained for the first time so far as we know,which are expected to understand the properties of the confined compact polymer chains more completely.  相似文献   

19.
 Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine -bis(4-amino-3,5-dimethylphenyl)-4′-fluorophenyl methane with several aromatic dianhydrides. The one-step polymerization procedure was conducted at 180℃ in m-cresol, producing the polyimides with inherent viscosities of 0.680.76 dL•g1. The polyimides could be soluble not only in polar aprotic solvents, such as N-methyl-2-pyrrolidinone, and N,N-dimethylacetamide, but also in common organic solvents, such as chloroform, cyclopentanone, m-cresol and so on. The polyimide films show excellent transparency with the UV-Vis cut-off lengths of 310360 nm and light transmittances of higher than 80% in the visible region. In addition, the polyimides exhibit good thermal stability with an initial decomposition temperature (Td) higher than 530℃ and have more than 60% of residual weight retentions at 700℃.  相似文献   

20.
The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains aredirectly obtained from a priori probability P_(αβ). Here the differing statistical weight matrices for the Si-Oand O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, asthe same statistical weight matrices for the Si -O and O- Si bonds are adopted, there exists a large deviationof αpriori probability P_(αβ) between the theory and the molecular dynamics (MD) simulation. Our model givessatisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants fordimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to otherchains, such as -CH_2-C[(CH_2)_mH]_2- and -O-Si[(CH_2)_mH]_2 for arbitrary m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号