首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The goal of this paper is to demonstrate that all non-singular rational normal scrolls \(S(a_0,\ldots ,a_k)\subseteq \mathbb P ^N\), \(N =\sum _{i=0}^k(a_i)+k\), (unless \(\mathbb P ^{k+1}=S(0,\ldots ,0,1)\), the rational normal curve \(S(a)\) in \(\mathbb P ^a\), the quadric surface \(S(1,1)\) in \(\mathbb P ^3\) and the cubic scroll \(S(1,2)\) in \(\mathbb P ^4\)) support families of arbitrarily large rank and dimension of simple Ulrich (and hence indecomposable ACM) vector bundles. Therefore, they are all of wild representation type unless \(\mathbb P ^{k+1}\), \(S(a)\), \(S(1,1)\) and \(S(1,2)\) which are of finite representation type.  相似文献   

2.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

3.
Let \(F\) be a field of characteristic zero. Let \(M_{n}(F)\) be the algebra of all \(n \times n\) matrices over \(F\). We have found, in this article, a generating set for the graded central polynomials of \(M_{n}(F)\) when it is equipped with an elementary grading whose neutral component coincides with the diagonal.  相似文献   

4.
An automorphism \(\alpha \) of a Cayley graph \(\mathrm{Cay}(G,S)\) of a group G with connection set S is color-preserving if \(\alpha (g,gs) = (h,hs)\) or \((h,hs^{-1})\) for every edge \((g,gs)\in E(\mathrm{Cay}(G,S))\). If every color-preserving automorphism of \(\mathrm{Cay}(G,S)\) is also affine, then \(\mathrm{Cay}(G,S)\) is a Cayley color automorphism (CCA) graph. If every Cayley graph \(\mathrm{Cay}(G,S)\) is a CCA graph, then G is a CCA group. Hujdurovi? et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group \(F_{21}\) of order 21. We first show that there is a unique non-CCA Cayley graph \(\Gamma \) of \(F_{21}\). We then show that if \(\mathrm{Cay}(G,S)\) is a non-CCA graph of a group G of odd square-free order, then \(G = H\times F_{21}\) for some CCA group H, and \(\mathrm{Cay}(G,S) = \mathrm{Cay}(H,T)\mathbin {\square }\Gamma \).  相似文献   

5.
If \(T=\left(\begin{array}{clcr}T_1&\quad C\\ 0&\quad T_2\end{array}\right) \in B(\mathcal{X }_1\oplus \mathcal{X }_2)\) is a Banach space upper triangular operator matrix with diagonal \((T_1, T_2)\) such that \(T_2\) is \(k\)-nilpotent for some integer \(k\ge 1\), then \(T\) inherits a number of its spectral properties, such as SVEP, Bishop’s property \((\beta )\) and the equality of Browder and Weyl spectrum, from those of \(T_1\). This paper studies such operators. The conclusions are then applied to provide a general framework for results pertaining (for example) to Browder, Weyl type theorems and supercyclicity for classes of Hilbert space operators, such as \(k\)-quasi hyponormal, \(k\)-quasi isometric and \(k\)-quasi paranormal operators, defined by a positivity condition.  相似文献   

6.
7.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

8.
A decomposition of the blocks of an \(\textsf {STS}(v)\) into partial parallel classes of size m is equivalent to a Kirkman signal set \(\textsf {KSS}(v,m)\). We give decompositions of \(\textsf {STS}(4v-3)\) into classes of size \(v-1\) when \(v \equiv 3 \pmod {6}\), \(v \not = 3\). We also give decompositions of \(\textsf {STS}(v)\) into classes of various sizes when v is a product of two arbitrary integers that are both congruent to \(3 \pmod {6}\). These results produce new families of \(\textsf {KSS}(v,m)\).  相似文献   

9.
We provide conditions for a linear map of the form \(C_{R,T}(S)=RST\) to be q-frequently hypercyclic on algebras of operators on separable Banach spaces. In particular, if R is a bounded operator satisfying the q-frequent hypercyclicity criterion, then the map \(C_{R}(S)=RSR^*\) is shown to be q-frequently hypercyclic on the space \(\mathcal {K}(H)\) of all compact operators and the real topological vector space \(\mathcal {S}(H)\) of all self-adjoint operators on a separable Hilbert space H. Further we provide a condition for \(C_{R,T}\) to be q-frequently hypercyclic on the Schatten von Neumann classes \(S_p(H)\). We also characterize frequent hypercyclicity of \(C_{M^*_\varphi ,M_\psi }\) on the trace-class of the Hardy space, where the symbol \(M_\varphi \) denotes the multiplication operator associated to \(\varphi \).  相似文献   

10.
11.
12.
For fixed real numbers \(c>0,\)\(\alpha >-\frac{1}{2},\) the finite Hankel transform operator, denoted by \(\mathcal {H}_c^{\alpha }\) is given by the integral operator defined on \(L^2(0,1)\) with kernel \(K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(cxy).\) To the operator \(\mathcal {H}_c^{\alpha },\) we associate a positive, self-adjoint compact integral operator \(\mathcal Q_c^{\alpha }=c\, \mathcal {H}_c^{\alpha }\, \mathcal {H}_c^{\alpha }.\) Note that the integral operators \(\mathcal {H}_c^{\alpha }\) and \(\mathcal Q_c^{\alpha }\) commute with a Sturm-Liouville differential operator \(\mathcal D_c^{\alpha }.\) In this paper, we first give some useful estimates and bounds of the eigenfunctions \(\varphi ^{(\alpha )}_{n,c}\) of \(\mathcal H_c^{\alpha }\) or \(\mathcal Q_c^{\alpha }.\) These estimates and bounds are obtained by using some special techniques from the theory of Sturm-Liouville operators, that we apply to the differential operator \(\mathcal D_c^{\alpha }.\) If \((\mu _{n,\alpha }(c))_n\) and \(\lambda _{n,\alpha }(c)=c\, |\mu _{n,\alpha }(c)|^2\) denote the infinite and countable sequence of the eigenvalues of the operators \(\mathcal {H}_c^{(\alpha )}\) and \(\mathcal Q_c^{\alpha },\) arranged in the decreasing order of their magnitude, then we show an unexpected result that for a given integer \(n\ge 0,\)\(\lambda _{n,\alpha }(c)\) is decreasing with respect to the parameter \(\alpha .\) As a consequence, we show that for \(\alpha \ge \frac{1}{2},\) the \(\lambda _{n,\alpha }(c)\) and the \(\mu _{n,\alpha }(c)\) have a super-exponential decay rate. Also, we give a lower decay rate of these eigenvalues. As it will be seen, the previous results are essential tools for the analysis of a spectral approximation scheme based on the eigenfunctions of the finite Hankel transform operator. Some numerical examples will be provided to illustrate the results of this work.  相似文献   

13.
Let \(\bar{p}(n)\) denote the number of overpartitions of n. Fortin et al. and Hirschhorn and Sellers established some congruences modulo powers of 2 for \(\bar{p}(n)\). Recently, Xia and Yao found several congruences modulo powers of 2 and 3. In particular, they proved that \(\bar{p}(96n+12)\equiv 0 \ (\mathrm{mod}\ 9)\) and \(\bar{p}(24n+19)\equiv 0\ (\mathrm{mod\ }27)\). In this paper, we generalize the two congruences and establish several new infinite families of congruences modulo 9 and 27 for \(\bar{p}(n)\). Furthermore, we prove some strange congruences modulo 9 and 27 for \(\bar{p}(n)\) by employing some results due to Cooper et al. For example, we prove that for \(k\ge 0\), \(\bar{p}(4^{k+1})\equiv 2^{k+3}+6(-1)^k\ (\mathrm{mod} \ 27) \) and \(\bar{p}\left( 7^{2k}\right) \equiv 2-2k\ (\mathrm{mod}\ 9)\). We also present two conjectures on congruences for \(\bar{p}(n)\).  相似文献   

14.
Let \(\overline{A}_{\ell }(n)\) be the number of overpartitions of n into parts not divisible by \(\ell \). In a recent paper, Shen calls the overpartitions enumerated by the function \(\overline{A}_{\ell }(n)\) as \(\ell \)-regular overpartitions. In this paper, we find certain congruences for \(\overline{A}_{\ell }(n)\), when \(\ell =4, 8\), and 9. Recently, Andrews introduced the partition function \(\overline{C}_{k, i}(n)\), called singular overpartition, which counts the number of overpartitions of n in which no part is divisible by k and only parts \(\equiv \pm i\pmod {k}\) may be over-lined. He also proved that \(\overline{C}_{3, 1}(9n+3)\) and \(\overline{C}_{3, 1}(9n+6)\) are divisible by 3. In this paper, we prove that \(\overline{C}_{3, 1}(12n+11)\) is divisible by 144 which was conjectured to be true by Naika and Gireesh.  相似文献   

15.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

16.
We study various classes of maximality principles, \(\mathrm {MP}(\kappa ,\Gamma )\), introduced by Hamkins (J Symb Log 68(2):527–550, 2003), where \(\Gamma \) defines a class of forcing posets and \(\kappa \) is an infinite cardinal. We explore the consistency strength and the relationship of \(\textsf {MP}(\kappa ,\Gamma )\) with various forcing axioms when \(\kappa \in \{\omega ,\omega _1\}\). In particular, we give a characterization of bounded forcing axioms for a class of forcings \(\Gamma \) in terms of maximality principles MP\((\omega _1,\Gamma )\) for \(\Sigma _1\) formulas. A significant part of the paper is devoted to studying the principle MP\((\kappa ,\Gamma )\) where \(\kappa \in \{\omega ,\omega _1\}\) and \(\Gamma \) defines the class of stationary set preserving forcings. We show that MP\((\kappa ,\Gamma )\) has high consistency strength; on the other hand, if \(\Gamma \) defines the class of proper forcings or semi-proper forcings, then by Hamkins (2003), MP\((\kappa ,\Gamma )\) is consistent relative to \(V=L\).  相似文献   

17.
Let R be a commutative ring with \(1\ne 0\) and the additive group \(R^+\). Several graphs on R have been introduced by many authors, among zero-divisor graph \(\Gamma _1(R)\), co-maximal graph \(\Gamma _2(R)\), annihilator graph AG(R), total graph \( T(\Gamma (R))\), cozero-divisors graph \(\Gamma _\mathrm{c}(R)\), equivalence classes graph \(\Gamma _\mathrm{E}(R)\) and the Cayley graph \(\mathrm{Cay}(R^+ ,Z^*(R))\). Shekarriz et al. (J. Commun. Algebra, 40 (2012) 2798–2807) gave some conditions under which total graph is isomorphic to \(\mathrm{Cay}(R^+ ,Z^*(R))\). Badawi (J. Commun. Algebra, 42 (2014) 108–121) showed that when R is a reduced ring, the annihilator graph is identical to the zero-divisor graph if and only if R has exactly two minimal prime ideals. The purpose of this paper is comparison of graphs associated to a commutative Artinian ring. Among the results, we prove that for a commutative finite ring R with \(|\mathrm{Max}(R)|=n \ge 3\), \( \Gamma _1(R) \simeq \Gamma _2(R)\) if and only if \(R\simeq \mathbb {Z}^n_2\); if and only if \(\Gamma _1(R) \simeq \Gamma _\mathrm{E}(R)\). Also the annihilator graph is identical to the cozero-divisor graph if and only if R is a Frobenius ring.  相似文献   

18.
We prove that the only symplectic semifield spreads of \(\hbox {PG}(5,q^2)\), \(q\ge 2^{14}\) even, whose associated semifield has center containing \({\mathbb F}_q\), is the Desarguesian spread, by proving that the only \({\mathbb F}_q\)-linear set of rank 6 disjoint from the secant variety of the Veronese surface of \(\hbox {PG}(5,q^2)\) is a plane with three points of the Veronese surface of \(\hbox {PG}(5,q^6){\setminus } \hbox {PG}(5,q^2)\).  相似文献   

19.
We show that for any non-trivial representation \((V, \pi )\) of \(\mathfrak {u}(2)\) with the center acting as multiples of the identity, the semidirect product \(\mathfrak {u}(2) \ltimes _\pi V\) admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that \(\mathfrak {u}(2) \ltimes _\pi V\) degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor \(\mathrm {SU}(2)\) admitting a left invariant metric with negative Ricci is therefore obtained for any \(n \ge 7\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号