首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Kohn-Müller model for the formation of domain patterns in martensitic shape-memory alloys consists in minimizing the sum of elastic, surface and boundary energy in a simplified scalar setting, with a nonconvex constraint representing the presence of different variants. Precisely, one minimizes
among all u:(0,l)×(0,h)→ ℝ such that ∂ y u = ± 1 almost everywhere. We prove that for small ε the minimum of J ε, β scales as the smaller of ε1/2β1/2 l 1/2 h and ε2/3 l 1/3 h, as was conjectured by Kohn and Müller. Together with their upper bound, this shows rigorously that a transition is present between a laminar regime at ε/l≫ β3 and a branching regime at ε/l≪ β3. PACS 64.70.Kb, 62.20.-x, 02.30.Xx  相似文献   

2.
Variable fluid property continuity, Navier–Stokes and energy equations are solved for roughness induced forced convective laminar-transitional flow in a micropipe. Influences of Reynolds number, heat flux and surface roughness, on the momentum-energy transport mechanisms and second-law of thermodynamics, are investigated for the ranges of Re = 1–2,000, Q = 5–100 W/m2 and ε = 1–50 μm. Numerical investigations put forward that surface roughness accelerates transition with flatter velocity profiles and increased intermittency values (γ); such that a high roughness of ε = 50 μm resulted in transitional character at Re tra = 450 with γ = 0.136. Normalized friction coefficient (C f*) values showed augmentation with Re, as the evaluated C f* are 1.006, 1.028 and 1.088 for Re = 100, 500 and 1,500, respectively, at ε = 1 μm, the corresponding values rise to C f* = 1.021, 1.116 and 1.350 at ε = 50 μm. Heat transfer rates are also recorded to rise with Re and ε; moreover the growing influence of ε on Nusselt number with Re is determined by the Nu ε=50 μm/Nu ε=1 μm ratios of 1.086, 1.168 and 1.259 at Re = 500, 1,000 and 1,500. Thermal volumetric entropy generation values decrease with Re and ε in heating; however the contrary is recorded for frictional volumetric entropy generation data, where the augmentations in are more considerable when compared with the decrease rates of   相似文献   

3.
We establish the L p resolvent estimates for the Stokes operator in Lipschitz domains in , for . The result implies that the Stokes operator in a three-dimensional Lipschitz domain generates a bounded analytic semigroup in L p for (3/2) − ε < p < 3 + ε. This gives an affirmative answer to a conjecture of M. Taylor (Progr. Nonlinear Differential Equations Appl., vol. 42, pp. 320–334).  相似文献   

4.
5.
Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.  相似文献   

6.
Let u(ε) be a rescaled 3-dimensional displacement field solution of the linear elastic model for a free prismatic rod Ωε having cross section with diameter of order ε, and let u (0) –Bernoulli–Navier displacement – and u (2) be the two first terms derived from the asymptotic method. We analyze the residue r(ε) = u(ε) − (u (0) + ε2 u (2)) and if the cross section is star-shaped, we prove such residue presents a Saint-Venant"s phenomenon near the ends of the rod. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We establish the existence and uniqueness results over the semi-infinite interval [0,∞) for a class of nonlinear third order ordinary differential equations of the form
lf"¢( h) + f( h)f"( h) - ( f¢( h) )2 - Mf¢( h)    + C(C + M ) = 0,f( 0 ) = s ,       f¢( 0 ) = c,       limh? ¥ f¢( h) = C.\begin{array}{l}f'( \eta) + f( \eta)f'( \eta) - ( f'( \eta) )^{2} - Mf'( \eta)\\[6pt]\quad {}+ C(C + M ) = 0,\\[6pt]f( 0 ) = s ,\qquad f'( 0 ) = \chi ,\qquad \displaystyle\lim\limits_{\eta \to \infty} f'( \eta) = C.\end{array}  相似文献   

8.
With a single numerical method the performance of three classes of turbulence models is compared for different types of attached boundary layers, for which direct numerical simulations or experiments are available in the literature. The boundary-layer equations are solved with the following turbulence models: an algebraic model, two-equation models (k-ε andk-ω), and a differential Reynolds-stress model. The test cases are the channel flow, and boundary layers with zero, favourable and adverse streamwise pressure gradient. The differential Reynolds-stress model gives the best overall performance, whereas the performance of the algebraic model and thek-ω model is reasonably good. The performance of thek-ε model is less good for boundary layers with a non-zero streamwise pressure gradient, but it can easily be improved by an additional source term in the ε equation, which is also applied in the considered differential Reynolds-stress model.  相似文献   

9.
A fully developed laminar Poiseuille flow subject to constant heat flux across the wall is analysed with respect to its stability behavior by applying a weakly nonlinear stability theory. It is based on an expansion of the disturbance control equations with respect to a perturbation parameter ε. This parameter is the small initial amplitude of the fundamental wave. This fundamental wave which is the solution of the linear (Orr-Sommerfeld) first order equation triggers all higher order effects with respect to ε. Heat transfer is accounted for asymptotically through an expansion with respect to a small heat transfer parameter ε T . Both perturbation parameters, ε and ε T , are linked by the assumption ε T =O2) by which a certain distinguished limit is assumed. The results for a fluid with temperature dependent viscosity show that heat transfer effects in the nonlinear range continue to act in the same way as in the initial linear range. Received on 11 August 1997  相似文献   

10.
The present paper deals with the prediction of three-dimensional fluid flow and heat transfer in rib-roughened ducts of square cross-section, which are either stationary, or rotate in orthogonal mode. The main objective is to assess how a recently developed variant of a cubic non-linear kε model (proposed by Craft et al. Flow Turbul Combust 63:59–80, 1999) can predict three-dimensional flow and heat transfer characteristics through stationary and rotating ribbed ducts. The present paper discusses turbulent air flow and heat transfer through two different configurations, namely: (I) a stationary square duct with “in-line” normal and (II) a square duct with normal ribs in a “staggered” arrangement under stationary and rotating conditions, with the axis of rotation normal to the flow direction and parallel to the ribs. In this paper the flow and thermal predictions of the linear kε model (EVM) are also included, as a set of baseline predictions. The mean flow predictions show that both linear and non-linear kε models can successfully reproduce most of the measured data for stream-wise and cross-stream velocity components. Moreover, the non-linear model is able to produce better results for the turbulent stresses. The heat transfer predictions show that both EVM and NLEVM2, the more recent variant of the non-linear kε, with the algebraic length-scale correction term, overestimate the measured Nusselt numbers for both geometries examined. While the EVM with the differential length-scale correction term underestimates heat transfer levels, the Nusselt number predictions with the NLEVM2 and the ‘NYP’ term are in close agreements with the measured data. Comparisons with our earlier work, Iacovides and Raisee (Int J Heat Fluid Flow, 20:320–328, 1999), show that the NLEVM2 thermal predictions are of similar quality to those of a second-moment closure.  相似文献   

11.
This paper deals with the asymptotic analysis of the three-dimensional problem for a linearly elastic cantilever having an open cross-section which is the union of rectangles with sides of order ε and ε 2, as ε goes to zero. Under suitable assumptions on the given loads and for homogeneous and isotropic material, we show that the three-dimensional problem Γ-converges to the classical one-dimensional Vlassov model for thin-walled beams.   相似文献   

12.
Using the notion of Γ-convergence, we discuss the limiting behavior of the three-dimensional nonlinear elastic energy for thin elliptic shells, as their thickness h converges to zero, under the assumption that the elastic energy of deformations scales like h β with 2 < β < 4. We establish that, for the given scaling regime, the limiting theory reduces to linear pure bending. Two major ingredients of the proofs are the density of smooth infinitesimal isometries in the space of W 2,2 first order infinitesimal isometries, and a result on matching smooth infinitesimal isometries with exact isometric immersions on smooth elliptic surfaces.  相似文献   

13.
The one-dimensional, gravity-driven film flow of a linear (l) or exponential (e) Phan-Thien and Tanner (PTT) liquid, flowing either on the outer or on the inner surface of a vertical cylinder or over a planar wall, is analyzed. Numerical solution of the governing equations is generally possible. Analytical solutions are derived only for: (1) l-PTT model in cylindrical and planar geometries in the absence of solvent, b o [(h)\tilde]s/([(h)\tilde]s +[(h)\tilde]p)=0\beta\equiv {\tilde{\eta}_s}/\left({\tilde{\eta}_s +\tilde{\eta}_p}\right)=0, where [(h)\tilde]p\widetilde{\eta}_p and [(h)\tilde]s\widetilde{\eta}_s are the zero-shear polymer and solvent viscosities, respectively, and the affinity parameter set at ξ = 0; (2) l-PTT or e-PTT model in a planar geometry when β = 0 and x 1 0\xi \ne 0; (3) e-PTT model in planar geometry when β = 0 and ξ = 0. The effect of fluid properties, cylinder radius, [(R)\tilde]\tilde{R}, and flow rate on the velocity profile, the stress components, and the film thickness, [(H)\tilde]\tilde{H}, is determined. On the other hand, the relevant dimensionless numbers, which are the Deborah, De=[(l)\tilde][(U)\tilde]/[(H)\tilde]De={\tilde{\lambda}\tilde{U}}/{\tilde{H}}, and Stokes, St=[(r)\tilde][(g)\tilde][(H)\tilde]2/([(h)\tilde]p +[(h)\tilde]s )[(U)\tilde]St=\tilde{\rho}\tilde{g}\tilde{\rm H}^{2}/\left({\tilde{\eta}_p +\tilde{\eta}_s} \right)\tilde{U}, numbers, depend on [(H)\tilde]\tilde{H} and the average film velocity, [(U)\tilde]\widetilde{U}. This makes necessary a trial and error procedure to obtain [(H)\tilde]\tilde{H} a posteriori. We find that increasing De, ξ, or the extensibility parameter ε increases shear thinning resulting in a smaller St. The Stokes number decreases as [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to zero for a film on the outer cylindrical surface, while it asymptotes to very large values when [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to unity for a film on the inner surface. When x 1 0\xi \ne 0, an upper limit in De exists above which a solution cannot be computed. This critical value increases with ε and decreases with ξ.  相似文献   

14.
The objective of this experimental study is to characterise the small-scale turbulence in the intermediate wake of a circular cylinder using measured mean-squared velocity gradients. Seven of the twelve terms which feature in ε, the mean dissipation rate of the turbulent kinetic energy, were measured throughout the intermediate wake at a Reynolds number of Re d  ≈ 3000 based on the cylinder diameter (d). Earlier measurements of the nine major terms of ε by Browne et al. (J Fluid Mech 179: 307–326 1987) at a downstream distance (x) of x = 420d and Re d  ≈ 1170 are also used. Whilst departures from local isotropy are significant at all locations in the wake, local axisymmetry of the small-scale turbulence with respect to the mean flow direction is first satisfied approximately at x = 40d. The approach towards local axisymmetry is discussed in some detail in the context of the relative values of the mean-squared velocity gradients. The data also indicate that axisymmetry is approximately satisfied by the large scales at x/d ≥ 40, suggesting that the characteristics of the small scales reflect to a major extent those of the large scales. Nevertheless, the far-wake data of Browne et al. (1987) show a discernible departure from axisymmetry for both small and large scales.  相似文献   

15.
Direct Numerical Simulations (DNS) of Kolmogorov flows are performed at three different Reynolds numbers Re λ between 110 and 190 by imposing a mean velocity profile in y-direction of the form U(y) = F sin(y) in a periodic box of volume (2π)3. After a few integral times the turbulent flow turns out to be statistically steady. Profiles of mean quantities are then obtained by averaging over planes at constant y. Based on these profiles two different model equations for the mean dissipation ε in the context of two-equation RANS (Reynolds Averaged Navier–Stokes) modelling of turbulence are compared to each other. The high Reynolds number version of the k-ε-model (Jones and Launder, Int J Heat Mass Transfer 15:301–314, 1972), to be called the standard model and a new model by Menter et al. (2006), to be called the Menter–Egorov model, are tested against the DNS results. Both models are solved numerically and it is found that the standard model does not provide a steady solution for the present case, while the Menter–Egorov model does. In addition a fairly good quantitative agreement of the model solution and the DNS data is found for the averaged profiles of the kinetic energy k and the dissipation ε. Furthermore, an analysis based on flow-inherent geometries, called dissipation elements (Wang and Peters, J Fluid Mech 608:113–138, 2008), is used to examine the Menter–Egorov ε model equation. An expression for the evolution of ε is derived by taking appropriate moments of the equation for the evolution of the probability density function (pdf) of the length of dissipation elements. A term-by-term comparison with the model equation allows a prediction of the constants, which with increasing Reynolds number approach the empirical values.  相似文献   

16.
In this work, we propose to study non isothermal air–air coaxial jets with two different approaches: parabolic and elliptic approaches. The standard kε model and the RSM model were applied in this study. The numerical resolution of the equations governing this flow type was carried out for: the parabolic approach, by a “home-made” CFD code based on a finite difference method, and the elliptic approach by an industrial code (FLUENT) based on a finite volume method. In forced convection mode (Fr = ∞), the two turbulence models are valid for the prediction of the mean flow. But for turbulent sizes, kε model gives results closer to those achieved in experiments compared to RSM Model. Concerning the limit of validity of the parabolic and elliptic approaches, we showed that for velocities ratio r lower than 1, the results of the two approaches were satisfactory. On the other hand, for r > 1, the difference between the results became increasingly significant. In mixed convection mode (Fr ≅ 20), the results obtained by the two turbulence models for the mean axial velocity were very different even in the plume region. For the temperature and the turbulent sizes the two models give satisfactory results which agree well with the correlations suggested by the experimenters for X ≥ 20. Thus, the second order model with σ t = 0.85 is more effective for a coaxial jet study in a mixed convection mode.  相似文献   

17.
The existence and linear stability problem for the Stokes periodic wavetrain on fluids of finite depth is formulated in terms of the spatial and temporal Hamiltonian structure of the water-wave problem. A proof, within the Hamiltonian framework, of instability of the Stokes periodic wavetrain is presented. A Hamiltonian center-manifold analysis reduces the linear stability problem to an ordinary differential eigenvalue problem on ℝ4. A projection of the reduced stability problem onto the tangent space of the 2-manifold of periodic Stokes waves is used to prove the existence of a dispersion relation Λ(λ,σ, I 1, I 2)=0 where λ ε ℂ is the stability exponent for the Stokes wave with amplitude I 1 and mass flux I 2 and σ is the “sideband’ or spatial exponent. A rigorous analysis of the dispersion relation proves the result, first discovered in the 1960's, that the Stokes gravity wavetrain of sufficiently small amplitude is unstable for F ε (0,F0) where F 0 ≈ 0.8 and F is the Froude number.  相似文献   

18.
We consider a non-convex variational problem (P) and the corresponding singular perturbed problem (P ε ). The qualitative behavior of stable critical points of (P ε ) depending on ε and a lower order term is discussed and we prove compactness of a sequence of stable critical points as ε ↘ 0. Moreover we show whether this limit is the global minimizer of (P). Furthermore uniform convergence is considered as well as the convergence rate depending on ε.   相似文献   

19.
We make the connection between the geometric model for capillarity with line tension and the Cahn‐Hilliard model of two‐phase fluids. To this aim we consider the energies where u is a scalar density function and W and V are double‐well potentials. We show that the behaviour of F ε in the limit ε→0 and λ→∞ depends on the limit of ε log λ. If this limit is finite and strictly positive, then the singular limit of the energies F ε leads to a coupled problem of bulk and surface phase transitions, and under certain assumptions agrees with the relaxation of the capillary energy with line tension. These results were announced in [ABS1] and [ABS2]. (Accepted November 5, 1997)  相似文献   

20.
Turbulence in rough-wall boundary layers: universality issues   总被引:1,自引:0,他引:1  
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number (Re θ) range of 1,300–28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 £ h/d £ 0.400.04 \leq h/\delta \leq 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend’s wall similarity hypothesis at low h/δ and also suggest that a single critical roughness height beyond which it fails does not exist. For fully rough flows, the data also confirm that mean flow and turbulence quantities are essentially independent of Re θ; all the Reynolds stresses match those of smooth-wall flows at very high Re θ. Nonetheless, there is a noticeable increase in stress contributions from strong sweep events in the near-wall region, even at quite low h/δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号