首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.

  相似文献   


2.
The marine sulfated polysaccharide fucoidan displays superior ability to induce platelet aggregation compared to other sulfated polysaccharides. As such, it is an attractive tool for studying molecular and cellular responses in activated platelets. The heterogeneous structure, however, poses a problem in such applications. This study describes the synthesis of sulfated α‐l ‐fucoside‐pendant poly(methacryl amides) with homogeneous structures. By using both thiol‐mediated chain transfer and reversible addition‐fragmentation chain transfer polymerization techniques, glycopolymers with different chain lengths are obtained. These glycopolymers show platelet aggregation response and surface changes similar to those of fucoidan, and cause platelet activation through intracellular signaling as shown by extensive protein tyrosine phosphorylation. As the platelet activating properties of the glycopolymers strongly mimic those of fucoidan, this study concludes these fucoidan‐mimetic glycopolymers are unique tools for studying molecular and cellular responses in human blood platelets.

  相似文献   


3.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


4.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


5.
Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature‐triggered aggregation followed by enzyme‐mediated cleavage for drug delivery or pH‐triggered conformational change and self‐assembly leading to structural stabilization by adjacent complementary residues). These “smart” behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. This review focuses on protein designs for self‐assembly or conformational changes due to stimuli such as shifts in temperature or pH.

  相似文献   


6.
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.

  相似文献   


7.
Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF‐7 breast cancer cells are treated with CYP‐polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site‐specific CYP activity in tumor tissues are discussed.

  相似文献   


8.
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin‐β1, and effective lowering of integrin‐β1 levels on a breast cancer model (MDA‐MB‐231 cells) is achieved by delivering a dicer‐substrate short interfering RNA (siRNA) targeting integrin‐β1 with lipid‐modified low molecular weight polyethylenimine polymers. Reduction of integrin‐β1 levels leads to reduced adhesion of MDA‐MB‐231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin‐β1 silencing in “scratch” and “transwell” migration assays. These results highlight the importance of integrin‐β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.

  相似文献   


9.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


10.
Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer‐by‐layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG‐63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly‐l ‐lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG‐63 cell adhesion during short‐term culture, while the BCS/AVI system increases alkaline phosphatase activity in long‐term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications.

  相似文献   


11.
Antimicrobial nanogels, aggregates, and films are prepared by complexation of the antiseptic and bacteriostatic agent chlorhexidine (CHX) for medical and dental applications. A series of α‐, β‐, and γ‐cyclodextrin methacrylate (CD‐MA) containing hydrophobic poly(methyl methacrylate) (PMMA) based nanogels are loaded quantitatively with CHX in aqueous dispersion. The results show that CHX is enhancedly complexed by the use of CD‐MA domains in the particles structure. β‐CD‐MA nanogels present the highest uptake of CHX. Furthermore, it is observed that the uptake of CHX in nanogels is influenced by the hydrophobic PMMA structure. CHX acts as external cross‐linker of nanogels by formation of 1:2 (CHX:CD‐MA) inclusion complexes of two β‐CD‐MA units on the surfaces of two different nanogels. The nanogels adsorb easily onto glass surfaces by physical self‐bonding and formation of a dense crosslinked nanogel film. Biological tests of the applied CHX nanogels with regard to antimicrobial efficiency are successfully performed against Staphylococcus aureus .

  相似文献   


12.
A multicomponent functional polymer is synthesized to support specific reactivity for successful conjugation with the vast array of functionality present in biological systems and the flexibility to conjugate biomolecules without requiring additional modification to install a terminal functional group. The multifunctional surface is realized using a novel coating composed of distinct N‐hydroxysuccinimide (NHS) ester and benzoyl functionalities, which can provide accessibility to both the NHS ester‐amine coupling reaction and the photochemically induced benzophenone crosslinking reaction, respectively. In addition, the multifunctional polymer is fabricated and transformed to form nanoscale colloids through the solvent displacement of a water/DMF system due to solubility characteristics of the resulting polymer with high polarity. A facile and efficient fabrication approach using the multifunctional nanocolloid is thus demonstrated to create a drug carrier by installing paclitaxel and folic acid for targeted cancer therapy.

  相似文献   


13.
Biocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug‐eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)‐derived polymers are investigated as coatings for metallic stents. All pre‐polymers reveal a low molecular weight between 3000 and 18 000 g mol?1. The cured polymers range from flexible to more rigid, with E‐modulus between 0.6 and 3.8 MPa. Their advantages include straightforward synthesis, biodegradability, easy processing through different scaffolding techniques, and easy transfer to industrial production. Furthermore, electrospraying and dip‐coating procedures are used as proof‐of‐concept to create coatings on metallic stents. Biocompatibility tests using adipose stem cells lead to promising results for the use of these materials as coatings for metallic coronary stents.

  相似文献   


14.
This study describes the development and cell culture application of nanometer thick photocrosslinkable thermoresponsive polymer films prepared by physical adsorption. Two thermoresponsive polymers, poly(N‐isopropylacrylamide (NIPAm)‐co‐acrylamidebenzophenone (AcBzPh)) and poly(NIPAm‐co‐AcBzPh‐co‐N‐tertbutylacrylamide) are investigated. Films are prepared both above and below the polymers' lower critical solution temperatures (LCSTs) and cross‐linked, to determine the effect, adsorption preparation temperature has on the resultant film. The films prepared at temperatures below the LCST are smoother, thinner, and more hydrophilic than those prepared above. Human pulmonary microvascular endothelial cell (HPMEC) adhesion and proliferation are superior on the films produced below the polymers LCST compared to those produced above. Cells sheets are detached by simply lowering the ambient temperature to below the LCST. Transmission electron, scanning electron, and light microscopies indicate that the detached HPMEC sheets maintain their integrity.

  相似文献   


15.
Photoinitiated reversible addition‐fragmentation chain transfer (RAFT) dispersion polymerization of 2‐hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2‐(2‐methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol−1) as the macro‐RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible‐light irradiation (405 nm, 0.5 mW cm−2), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple “ON/OFF” switch of the light source. Finally, thermoresponsive diblock copolymer nano‐objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation.

  相似文献   


16.
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well‐defined structures of polycaprolactone (PCL) and PCL‐ carbon nanotube (PCL‐CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering.

  相似文献   


17.
Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature‐dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme‐free cell culture systems.

  相似文献   


18.
The continuous photopolymerization of acrylate and methacrylate monomer miniemulsions (25% solids content) is investigated at room temperature in a compact helix minireactor. Using n‐butyl acrylate, the process yields 95% conversion after only 27 s residence time, and gel‐free high‐molecular‐weight products. Under optimized conditions, a 25‐fold increase in efficiency is obtained when compared to a batch photopolymerization. The reaction set‐up offers a frugal process because of moderate irradiance (2.6 mW cm?2), photoinitiator concentration (0.75 wt%), and low‐power UV‐A fluorescent lamp.

  相似文献   


19.
3D hydrogels better replicate in vivo conditions, and yield different results from 2D substrates. However, imaging interactions between cells and the hydrogel microenvironment is challenging because of light diffraction and poor focal depth. Here, cryosectioning and vibrating microtomy methods and fixation protocols are compared. Collagen I/III hydrogel sections (20–100 µm) are fixed with paraformaldehyde (2%–4%) and structurally evaluated. Cryosectioning damaged hydrogels, and vibrating microtomy (100 µm, 2%) yielded the best preservation of microstructure and cell integrity. These results demonstrate a potential processing method that preserves hydrogel and cell integrity, permitting imaging of cell interactions with the microenvironment.

  相似文献   


20.
We report the functionalization of polypyrrole (PPy) with a “sticky” biomolecule dopamine (DA), which mimics the essential component of mussel adhesive protein. PPy is one of the most promising electrically conductive polymers with good biocompatibility. The research findings reveal that the DA functionalization enhances the dispersibility and stability of PPy in water and its film adhesion to substrate surface significantly. The electrical conductivity of PPy increases to a maximum value and then decreases with the increasing DA concentration. An optimal DA to pyrrole (Py) mole ratio is found to be between 0.1 and 0.2, at which both conductivity and adhesion of DA‐functionalized PPy has been improved.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号