首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

2.
Heat capacity and enthalpy increments of calcium niobates CaNb2O6 and Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (669–1421 K). Temperature dependencies of the molar heat capacity in the form C pm=200.4+0.03432T−3.450·106/T 2 J K−1 mol−1 for CaNb2O6 and C pm=257.2+0.03621T−4.435·106/T 2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S m0(CaNb2O6, 298.15 K)=167.3±0.9 J K−1 mol−1 and S m0(Ca2Nb2O7, 298.15 K)=212.4±1.2 J K−1 mol−1, were evaluated from the low temperature heat capacity measurements. Standard enthalpies of formation at 298.15 K were derived using published values of Gibbs energy of formation and presented heat capacity and entropy data: Δf H 0(CaNb2O6, 298.15 K)= −2664.52 kJ molt-1 and Δf H 0(Ca2Nb2O7, 298.15 K)= −3346.91 kJ mol−1.  相似文献   

3.
The low-temperature heat capacity C p,m of erythritol (C4H10O4, CAS 149-32-6) was precisely measured in the temperature range from 80 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=390.254 K from the experimental C p-T curve. The molar enthalpy and entropy of this transition were determined to be 37.92±0.19 kJ mol−1 and 97.17±0.49 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined: Δc H m0(C4H10O4, cr)= −2102.90±1.56 kJ mol−1 and Δf H m0(C4H10O4, cr)= − 900.29±0.84 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

4.
The heat capacity and the enthalpy increments of strontium metaniobate SrNb2O6 were measured by the relaxation method (2-276 K), micro DSC calorimetry (260-320 K) and drop calorimetry (723-1472 K). Temperature dependence of the molar heat capacity in the form C pm=(200.47±5.51)+(0.02937±0.0760)T-(3.4728±0.3115)·106/T 2 J K−1 mol−1 (298-1500 K) was derived by the least-squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m0 (298.15 K)=173.88±0.39 J K−1 mol−1 was evaluated from the low temperature heat capacity measurements. The standard enthalpy of formation Δf H 0 (298.15 K)=-2826.78 kJ mol−1 was derived from total energies obtained by full potential LAPW electronic structure calculations within density functional theory.  相似文献   

5.
The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

6.
The temperature dependence of the molar heat capacity (C0 p) of hydrofullerene C60H36 between 5 and 340 K was determined by adiabatic vacuum calorimetry with an error of about 0.2%. The experimental data were used for the calculation of the thermodynamic functions of the compound in the range 0 to340 K. It was found that at T=298.15 K and p=101.325 kPa C0 p (298.15)=690.0 J K−1 mol−1,Ho(298.15)−Ho(0)= 84.94 kJ mol−1,So(298.15)=506.8 J K−1 mol−1, Go(298.15)−Ho(0)= −66.17 kJ mol−1. The standard entropy of formation of hydrofullerene C60H36 and the entropy of reaction of its formation by hydrogenation of fullerene C60 with hydrogen were estimated and at T=298.15 K they were ΔfSo= −2188.4 J K−1 mol−1 and ΔrSo= −2270.5 J K−1mol−1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.  相似文献   

8.
The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C p,m [J K−1 mol−1]=181.43+51.297X −4.7816X 2−1.9734X 3+8.1048X 4+11.108X 5 [X=(T−135)/55] for the solid phase (80–190 K), C p,m [J K−1 mol−1]= 349.96+25.106X+9.1320X 2+19.368X 3+2.23X 4−8.8201X 5 [X=(T−225)/27] for the glass state (198–252 K), and C p,m[J K−1 mol−1]= 402.40+21.982X−3.0304X 2+3.6514X 3+3.4585X 4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔH g=2.157 kJ mol−1 and ΔS g=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 8.453 kJ mol−1 and ΔS m=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be Δc H m0 = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be Δf H m0 = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.  相似文献   

9.
An N-tert-butyloxycarbonylated organic synthesis intermediate, (S)-tert-butyl 1-phenylethylcarbamate, was prepared and investigated by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The molar heat capacities of (S)-tert-butyl 1-phenylethylcarbamate were precisely determined by means of adiabatic calorimetry over the temperature range of 80-380 K. There was a solid–liquid phase transition exhibited during the heating process with the melting point of 359.53 K. The molar enthalpy and entropy of this transition were determined to be 29.73 kJ mol−1 and 82.68 J K−1 mol−1 based on the experimental C pT curve, respectively. The thermodynamic functions, [HT0 - H298.150 H_{T}^{0} - H_{298.15}^{0} ] and [ST0 - S298.150 S_{T}^{0} - S_{298.15}^{0} ], were calculated from the heat capacity data in the temperature range of 80–380 K with an interval of 5 K. TG experiment showed that the pyrolysis of the compound was started at the temperature of 385 K and terminated at 510 K within one step.  相似文献   

10.
The heat capacities of 2-benzoylpyridine were measured with an automated adiabatic calorimeter over the temperature range from 80 to 340 K. The melting point, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 316.49±0.04 K, 20.91±0.03 kJ mol–1 and 66.07±0.05 J mol–1 K–1, respectively. The purity of the compound was calculated to be 99.60 mol% by using the fractional melting technique. The thermodynamic functions (HTH298.15) and (STS298.15) were calculated based on the heat capacity measurements in the temperature range of 80–340 K with an interval of 5 K. The thermal properties of the compound were further investigated by differential scanning calorimetry (DSC). From the DSC curve, the temperature corresponding to the maximum evaporation rate, the molar enthalpy and entropy of evaporation were determined to be 556.3±0.1 K, 51.3±0.2 kJ mol–1 and 92.2±0.4 J K–1 mol–1, respectively, under the experimental conditions.  相似文献   

11.
The heat capacity and the heat content of bismuth niobate BiNb5O14 were measured by the relaxation time method, DSC and drop method, respectively. The temperature dependence of heat capacity in the form C pm=455.84+0.06016T–7.7342·106/T 2 (J K–1 mol–1) was derived by the least squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m=397.17 J K–1 mol–1 was derived from the low temperature heat capacity measurement.  相似文献   

12.
The heat capacity of crystalline α-platinum dichloride was measured for the first time in the temperature intervals from 11 to 300 K (vacuum adiabatic microcalorimeter) and from 300 to 620 K (differential scanning calorimetry). In the 300–620 K temperature interval, the C° p values for α-PtCl2 (cr) coincide with the heat capacity of CrCl2 (cr) within the limits of experimental error, which made it possible to estimate the heat capacity of α-PtCl2 (cr) at higher temperatures. The approximating equation of the temperature dependence of the heat capacity in the interval from 298 to 900 K C° p (±0.8) = 63.5 + 21.4·10−3 T + 0.883·105/T 2 (J mol−1 K−1) was derived using the experimental values, as well as the literature data on the heat capacity of CrCl2 (cr). For the standard conditions, the C° p,298.15 and S°298.15 values are 70.92±0.08 and 100.9±0.33 J mol−1 K, respectively; H°298.15H°0 = 14 120±42 J mol−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1136–1138, June, 2008.  相似文献   

13.
The temperature dependency of the saturated vapor pressure of Ir(acac)3 has been measured by the method of calibrated volume (MCV), the Knudsen method, the flow transpiration method, and the membrane method. The thermodynamic parameters of phase transition of a crystal to gas were calculated using each of these methods, and the following values of ΔH T 0 (kJ mol−1) and ΔS T 0 (J mol−1K−1), respectively, were obtained: MCV: 101.59, 156.70; Knudsen: 130.54, 224.40; Flow transpiration: 129.34, 212.23; Membrane: 95.45, 149.44 Coprocessing of obtaining data (MCV, flow transportation method and Knudsen method) at temperature ranges 110−200°C as also conducted:ΔH T 0 =127.9±2.1 (kJ mol−1 ); ΔS T 0 =215.2±5.0 (J mol−1 K−1 ). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   

15.
The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.  相似文献   

16.
Low-temperature heat capacity of natural zinnwaldite was measured at temperatures from 6 to 303 K in a vacuum adiabatic calorimeter. An anomalous behavior of heat capacity function C p(T) has been revealed at very low temperatures, where this function does not tend to zero. Thermodynamic functions of zinnwaldite have been calculated from the experimental data. At 298.15 K, heat capacity C p(T) = 339.8 J K−1mol−1, calorimetric entropy S o(Т) – S o(6.08) = 329.1 J K−1 mol−1, and enthalpy Н o(Т) − Н o(6.08) = 54,000 J mol−1. Heat capacity and thermodynamic functions at 298.15 K for zinnwaldite having theoretical composition were estimated using additive method of calculation.  相似文献   

17.
The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.  相似文献   

18.
Molar heat capacities of acetaminophen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 330 K. A solid-solid transition at 149.96 K was found from the Cp,m-T curve. The polynomial functions of Cp,.m(J K-1 mol-1) vs. T were established on the heat capacity measurements by means of the least square fitting method. Thermal decomposition processes of acetaminophen have been studied by thermogravimetry. And the thermal decomposition kinetics parameters, such as activation energy E, pre-exponential factor A and reaction order n, were calculated by TG-DTG techniques with the Freeman-Carroll method, Kissinger method and Ozawa method. Accordingly the thermal decomposition kinetics equation of acetaminophen is expressed as: dα/dt=2.67·107e-89630/RT(1-α)0.23. The process of fusion has been investigated through DSC. The melting point, molar enthalpy and entropy of fusion are to be (441.89±0.04) K, 26.49±0.44 kJ mol-1 and 59.80±1.01 J K-1 mol-1, respectively.  相似文献   

19.
Results of solubility experiments involving crystalline nickel oxide (bunsenite) in aqueous solutions are reported as functions of temperature (0 to 350 °C) and pH at pressures slightly exceeding (with one exception) saturation vapor pressure. These experiments were carried out in either flow-through reactors or a hydrogen-electrode concentration cell for mildly acidic to near neutral pH solutions. The results were treated successfully with a thermodynamic model incorporating only the unhydrolyzed aqueous nickel species (viz., Ni2+) and the neutrally charged hydrolyzed species (viz., Ni(OH)20)\mathrm{Ni(OH)}_{2}^{0}). The thermodynamic quantities obtained at 25 °C and infinite dilution are, with 2σ uncertainties: log10Ks0o = (12.40 ±0.29),\varDeltarGmo = -(70. 8 ±1.7)\log_{10}K_{\mathrm{s0}}^{\mathrm{o}} = (12.40 \pm 0.29),\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = -(70. 8 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = -(105.6 ±1.3)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = -(105.6 \pm 1.3) kJ⋅mol−1; \varDeltarSmo = -(116.6 ±3.2)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} =-(116.6 \pm 3.2) J⋅K−1⋅mol−1; \varDeltarCp,mo = (0 ±13)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = (0 \pm 13) J⋅K−1⋅mol−1; and log10Ks2o = -(8.76 ±0.15)\log_{10}K_{\mathrm{s2}}^{\mathrm{o}} = -(8.76 \pm 0.15); \varDeltarGmo = (50.0 ±1.7)\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = (50.0 \pm 1.7) kJ⋅mol−1; \varDeltarHmo = (17.7 ±1.7)\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = (17.7 \pm 1.7) kJ⋅mol−1; \varDeltarSmo = -(108±7)\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} = -(108\pm 7) J⋅K−1⋅mol−1; \varDeltarCp,mo = -(108 ±3)\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = -(108 \pm 3) J⋅K−1⋅mol−1. These results are internally consistent, but the latter set differs from those gleaned from previous studies recorded in the literature. The corresponding thermodynamic quantities for the formation of Ni2+ and Ni(OH)20\mathrm{Ni(OH)}_{2}^{0} are also estimated. Moreover, the Ni(OH)3 -\mathrm{Ni(OH)}_{3}^{ -} anion was never observed, even in relatively strong basic solutions (mOH - = 0.1m_{\mathrm{OH}^{ -}} = 0.1 mol⋅kg−1), contrary to the conclusions drawn from all but one previous study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号