首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李逸翔  汪球  罗凯  李进平  赵伟 《力学学报》2021,53(9):2493-2500
高超声速飞行器强激波后高温气体形成具有导电性的等离子体流场, 电离气体为磁场应用提供了直接工作环境, 磁流体流动控制技术利用外加磁场影响激波后的离子或电子运动规律, 这可以有效改善高超声速飞行器气动特性. 激波脱体距离作为高超声速磁流体流动控制较为直观的气动现象, 受到研究者重点关注; 磁场添加后激波脱体距离发生变化, 其变化幅度直接反映磁控效果, 然而基于高超声速磁流体流动控制的相关理论模型较少, 需要进一步发展. 本文基于低磁雷诺数假设和偶极子磁场分布的条件, 通过对连续方程沿径向积分以及对动量方程采用分离变量的方法, 推导了高超声速磁流体流动控制下的球头激波脱体距离解析表达式. 理论分析结果表明, 激波脱体距离随着磁相互作用系数的增加而变大; 随着来流速度的增加, 磁相互作用系数变为影响激波脱体距离大小的主要因素. 本文理论模型可以达到快速评估磁控效果的目的, 对高超声速磁流体流动控制实验方案设计和结果分析具有一定的指导意义.   相似文献   

2.
针对高超声速飞行伴随的热化学反应流动,本文回顾了郭永怀先生的科研理念和学科布局,综述了他亲手成立的高温气动团队在高超声速飞行风洞实验模拟理论与方法方面的研究进展.高温气体的迅速产生与迅速应用是一种理想的风洞运行方法,而激波管就是这样一种实验装备.论文首先介绍了激波管技术的基本理论与方程,指出将其用于高超声速流动实验模拟时所具有的独特优势.然后讨论了应用激波风洞复现需要的高超声速飞行状态的可行性、基本方程和需要解决的关键问题.针对这些关键问题,进一步介绍了如何应用爆轰现象研发激波风洞驱动技术的理论,并给出了基于爆轰驱动方法的技术发展和工程应用验证.最后,论文介绍了爆轰驱动激波风洞的界面匹配条件,该条件奠定了长实验时间激波风洞运行基础,是其他驱动方法尝试解决而没能完全解决的难题.高温气动团队关于高超声速飞行复现风洞的理论与技术研究,实现了郭永怀先生的战略规划,成就了国际领先的高超声速热化学反应流动研究平台.   相似文献   

3.
针对高超声速飞行伴随的热化学反应流动,本文回顾了郭永怀先生的科研理念和学科布局,综述了他亲手成立的高温气动团队在高超声速飞行风洞实验模拟理论与方法方面的研究进展.高温气体的迅速产生与迅速应用是一种理想的风洞运行方法,而激波管就是这样一种实验装备.论文首先介绍了激波管技术的基本理论与方程,指出将其用于高超声速流动实验模拟时所具有的独特优势.然后讨论了应用激波风洞复现需要的高超声速飞行状态的可行性、基本方程和需要解决的关键问题.针对这些关键问题,进一步介绍了如何应用爆轰现象研发激波风洞驱动技术的理论,并给出了基于爆轰驱动方法的技术发展和工程应用验证.最后,论文介绍了爆轰驱动激波风洞的界面匹配条件,该条件奠定了长实验时间激波风洞运行基础,是其他驱动方法尝试解决而没能完全解决的难题.高温气动团队关于高超声速飞行复现风洞的理论与技术研究,实现了郭永怀先生的战略规划,成就了国际领先的高超声速热化学反应流动研究平台.  相似文献   

4.
高超声速气流条件下飞行器内/外部流动中存在强湍流及脉动、边界层转捩、激波-边界层干扰和高温真实气体效应等耦合效应,表征该非定常流动现象对飞行器气动力、气动热以及目标光电特性等产生的影响是高超声速流动研究中的前沿课题.速度作为表征流动过程最重要的参数之一,准确的速度测量对于深入理解上述复杂流动-传输机理以及高超声速飞行器设计具有重要指导意义.文章针对高超声速流场速度测量中几种常用的非接触式激光测试技术进行了综述,主要包括基于空间法的粒子图像测速,基于激光吸收光谱、激光诱导荧光和瑞利散射的多普勒测速,基于飞行时间法的分子标记测速,以及基于流场折射率的聚焦激光差分干涉测速技术.首先简要介绍每种激光测速技术的基本原理,然后进一步介绍该技术在高超声速自由流、层/湍流边界层、激波/边界层干扰、尾流或其他复杂流动区域的速度及其脉动度测量等方面的典型应用,分析各种技术环境适用性及面临的局限性和挑战.最后对基于激光技术的高超声速流场速度测量进行了总结及发展趋势展望.  相似文献   

5.
为实现高速飞行器的宽速域飞行,如何保证进气道在非设计状态下的性能至关重要。相比于传统被动控制方式,等离子体/磁流体流动控制技术作为新概念主动流动控制技术,由于其具有结构简单,快速响应,并可根据实际飞行条件进行反馈控制等优势,在国内外上得到了广泛关注。本文介绍了等离子体/磁流体在高超/超声速进气道的主要应用方式与等离子体/磁流体建模方法。当进气道处于超临界状态时,等离子体/磁流体流动控制主要通过热阻塞效应产生虚拟型面,从而将激波系推回至唇口,该技术有望在需要短时间流动控制的高马赫数导弹上走向工程应用;由于等离子体/磁流体激励器与壁面平齐安装,对于高超声速飞行条件,相比于粗糙元其对热防护的要求较低,并且通过超声速风洞实验初步证明了通过高频激励对边界层施加扰动的可行性,需要从稳定性理论的角度对其物理机制进行研究。在后续发展中需要进一步创新等离子体产生技术及激励方式,发展等离子体与流的全耦合计算模型等离子体与流的全耦合计算模型与高效算法 ,为指导工程应用提供依据.   相似文献   

6.
触摸高温气体动力学   总被引:1,自引:0,他引:1  
回顾了高温气体动力学与高超声速科技相关的一些重要研究进展,探讨几个具有基础性研究意义的方向:即高超声速流动模拟;高温气体热化学反应机制;高超声速流动滞止区预测;高超声速边界层转捩和激波/激波相互作用诱导的气动热问题.这些研究方向与高温气体效应和强激波密切相关,对高超声速科技关键技术的突破起着重要作用.  相似文献   

7.
为实现高速飞行器的宽速域飞行,如何保证进气道在非设计状态下的性能至关重要。相比于传统被动控制方式,等离子体/磁流体流动控制技术作为新概念主动流动控制技术,由于其具有结构简单,快速响应,并可根据实际飞行条件进行反馈控制等优势,在国内外上得到了广泛关注。本文介绍了等离子体/磁流体在高超/超声速进气道的主要应用方式与等离子体/磁流体建模方法。当进气道处于超临界状态时,等离子体/磁流体流动控制主要通过热阻塞效应产生虚拟型面,从而将激波系推回至唇口,该技术有望在需要短时间流动控制的高马赫数导弹上走向工程应用;由于等离子体/磁流体激励器与壁面平齐安装,对于高超声速飞行条件,相比于粗糙元其对热防护的要求较低,并且通过超声速风洞实验初步证明了通过高频激励对边界层施加扰动的可行性,需要从稳定性理论的角度对其物理机制进行研究。在后续发展中需要进一步创新等离子体产生技术及激励方式,发展等离子体与流的全耦合计算模型等离子体与流的全耦合计算模型与高效算法,为指导工程应用提供依据.  相似文献   

8.
磁流体动力学斜激波控制数值模拟分析   总被引:2,自引:0,他引:2  
高超声速飞行器MHD(磁流体动力学)斜激波控制应用的关键在于理解等离子体斜激波流场与磁场的相互作用规律,这里发展了全MHD数值模拟方法对其进行研究,数值方法基于八波方程附加源项形式,进行有限体积离散,采用了Roe求解器、OC-TVD空间格式和LU-SGS方法,且采用投影方法降低磁场伪散度误差.考察外加均匀磁场的马赫10无粘导电拐角流动,压缩角为10°.结果中散度误差较低,并且通过激波参数验证了结果的准确性.流场显示,磁场使得激波角增大,部分情况下出现了快、慢激波结构,其中快激波变化更明显;壁面压强根据磁场的不同出现了不同程度的降低.最后采用群速度图方法进行了快慢激波形式分析,解释了磁场影响下流场形式变化机理.  相似文献   

9.
临近空间新型飞行器向全空域、更高马赫数发展,面临的气动热环境会越发恶劣,高温流场气动热预测技术是该类飞行器发展的关键技术之一.高超声速气流通过激波压缩或黏性阻滞减速,分子动能转化为内能,产生了高温.高温引起体分子振动、电子激发,伴随离解、电离反应等一系列复杂气动物理现象,其流场气动热预测面临诸多挑战.文章对高温热化学非平衡气动热预测技术的发展情况进行了分析探讨.首先,阐述了国内外高温气动热地面试验技术的发展历程,重点介绍分析了气动热风洞试验设备的模拟能力及目前试验测试技术的研究水平;然后,调研和讨论了高温气动热数值模拟研究现状,分别从热化学模型、辐射输运和壁面催化/烧蚀等多个角度探讨了热化学非平衡流场气动热数值模拟规律;最后,对气动热预测技术的发展趋势进行了讨论,提出了高温气动热试验与仿真技术后续应重点解决的问题.  相似文献   

10.
长试验时间爆轰驱动激波风洞技术研究   总被引:22,自引:6,他引:16  
地面试验是先进高超声速飞行器研制的主要手段之一,获得满足高超声速气动实验研究的长时间高焓气流是发展激波风洞技术的关键难题之一.依据反向爆轰驱动方法,针对满足超燃试验有效时间的要求,讨论了爆轰驱动激波风洞运行缝合条件匹配、喷管起动激波干扰控制和激波管末端激波边界层相互作用等因素对激波风洞试验时间的制约及其相应的解决方法.应用这些延长试验时间的激波风洞创新技术,成功研制了基于反向爆轰驱动方法的超大型激波风洞,试验时间长达100ms,并有复现高超声速飞行条件的流动模拟能力.   相似文献   

11.
超声速气流磁流体加速初步实验研究   总被引:5,自引:2,他引:3  
利用激波风洞, 采用氦气驱动氩气, 在平衡接触面运行方式下得到高温气体,通过在低压段注入电离种子K2CO3粉末, 实现高温条件下导电流体的产生, 设计了超声速喷管及磁流体加速实验段, 采用大电容提供电能, 开展了超声速气流磁流体加速初步实验研究. 典型实验条件下, 当喷管入口总压为0.7049MPa、理论平衡温度为8372.8K, 喷管出口马赫数为1.5, 电容充电电压为400V, 磁感应强度为0.5T时, 对电压电流特性、电导率、负载系数、电效率、加速效果等进行了测量或计算, 主要结论有: 磁场作用下的超声速气流的电导率的值大约在150S/m; 磁流体加速通道负载系数约为4, 电效率约为28%, 平均输入功率约198kW; 采用电参数测试方法对磁流体加速效果进行评估, 速度增加约15.7%;超声速气流的电导率对加速通道的电效率及加速效果等有很重要的影响.   相似文献   

12.
Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.  相似文献   

13.
磁流体流动控制中的磁场配置效率研究   总被引:2,自引:0,他引:2  
陈刚  张劲柏  李椿萱 《力学学报》2008,40(6):752-759
采用数值模拟方法研究了不同磁场空间构型对弹道式再入飞行器基准外形表面热流分布的影响. 计算模型为低磁雷诺数近似下的磁流体力学模型. 数值模拟结果表明两个大小相同、方向不同的磁偶极子对表面热流密度分布的影响存在较大差异,由此指出热流控制应用中磁场配置的效率问题. 随后的磁场详细作用机理分析表明上述差异的原因在于不同空间磁场分布对流动能量转化机制的影响不同. 以此为基础给出了在流动的不同区域,磁场空间分布应遵循的一般性原则.   相似文献   

14.
采用分区方法及Roe三阶流通量差分分裂格式求解雷诺平均N-S方程,湍流附加黏性系数用Baldwin-Lomax模型计算,数值模拟了高超声速条件下变高度圆柱诱导的激波边界层层干扰,其流场的主要特性均与实验结果一致或规律相同,结果清晰地展示了流场结构以及气动载荷分布随柱高度的变化特征,产说明激波碰撞和旋涡运动都可能导致飞行器表面局部气动载荷的增加。  相似文献   

15.
A self similar method is used to analyze numerically the one-dimensional, unsteady flow of a strong cylindrical shock wave driven by a piston moving with time according to an exponential law in a plasma of constant density. The plasma is assumed to be a non-ideal gas with infinite electrical conductivity permeated by an axial magnetic field. Numerical solutions in the region between the shock and the piston are presented for the cases of adiabatic and isothermal flow. The general behaviour of density, velocity, and pressure profiles remains unaffected due to presence of magnetic field in non-ideal gas. However, there is a decrease in values of density, velocity and pressure in case of magnetogasdynamics as compared to non-magnetic case. It may be noted that the effect of magnetic field on the flow pattern is more significant in case of isothermal flow as compared to adiabatic flow. The effect of non-idealness, specific heat exponent and magnetic field strength on the variation of shock strength across the shock front is also investigated.  相似文献   

16.
Basic problems of super-and hypersonic magnetohydrodynamics (MHD) associated with the determination of the integral characteristics of bodies and vehicles inside which there are systems generating a uniform magnetic field are considered. Three classes of flows, namely, flow in a hypersonic multimode fixed-geometry air-intake; internal and external flow in a model of a hypersonic vehicle containing an air-intake with an MHD generator, a combustion chamber, and a supersonic nozzle; and hypersonic flow past a blunt cone are studied using numerical simulation and theoretical analysis (on the basis of the complete averaged system of Navier-Stokes equations and the electrodynamic equations). Attention is concentrated on the presence of an additionalmagnetic force acting on the system generating themagnetic field and, consequently, on the body and initiating an additional drag (in the case of a vehicle-reducing its thrust). Attractive possibilities for MHD flow control, namely, an increase in the degree of flow compression in the air-intake, a reduction in the ignition length in the combustion chamber, and a decrease in the heat flux to the nose of the body, are noted, as well as negative effects associated with the action of the magnetic force on the bodies considered.  相似文献   

17.
Three-dimensional numerical simulations are presented considering the impact of a steady magnetic field on a bubble-driven liquid metal flow inside a cylinder. The injection of moderate gas flow rates through a single orifice at the bottom of the fluid vessel results in the formation of a bubble plume. The magnetic field is applied in either vertical or horizontal direction. The calculations were performed by means of the commercial software package CFX using the Euler–Euler multiphase model and the RANS–SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. The numerical models are validated with recent experimental results. (Zhang, C., Eckert, S., Gerbeth, G., 2007. The flow structure of a bubble-driven liquid–metal jet in a horizontal magnetic field, J. Fluid Mech. 575, 57–82.) The comparison between the numerical simulations and the experimental findings shows a good agreement. The calculations are able to reproduce a striking feature of a horizontal magnetic field found in the range of moderate Hartmann numbers revealing that such a steady transverse magnetic field may destabilize the flow and cause distinct oscillations of the liquid velocity.  相似文献   

18.
The structure of one-dimensional magnetohydrodynamics (MHD) shock waves is studied using the Navier–Stokes equations for the non-ideal gas phase. The exact solutions are obtained for the flow variables (i.e. particle velocity, temperature, pressure and change-in-entropy) within the shock transition region. The equation of state for a non-ideal gas is considered as given by Landau and Lifshitz. The effects of the non-idealness parameter and coefficient of viscosity of the gas are analysed on the flow variables assuming the magnetic field having only constant axial component. The findings confirm that the thickness of MHD shock front increases with decreasing values of the non-idealness parameter.  相似文献   

19.
Problems of the deceleration of a supersonic conducting flow by a magnetic field are investigated. A conducting gas flow in a circular tube is considered in the presence of an axisymmetric magnetic field induced by a unit current loop or solenoid of finite length. The analysis is carried out on the basis of both the Euler equations (inviscid gas) and the complete system of Navier-Stokes equations for laminar viscous gas flow and turbulent flow using a one-parameter turbulence model. The numerical simulation is based on an implicit relaxation finite-difference scheme which is a modification of the Godunov method. The total pressure losses are determined for various values of the magnetohydrodynamic (MHD) interaction, the initial Mach number, and different magnetic field geometries and it is shown that the irreversible losses are significant in MHD supersonic flow deceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号