首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal decomposition of FeSO4·6H2O was studied by mass spectroscopy coupled with DTA/TG thermal analysis under inert atmosphere. On the ground of TG measurements, the mechanism of decomposition of FeSO4·6H2O is: i) three dehydration steps FeSO4·6H2O FeSO4·4H2O+2H2O FeSO4·4H2O FeSO4·H2O+3H2O FeSO4·H2O FeSO4+H2O ii) two decomposition steps 6FeSO4 Fe2(SO4)3+2Fe2O3+2SO2 Fe2(SO4)3 Fe2O3+3SO2+3/2O2 The intermediate compound was identified as Fe2(SO4)3 and the final product as the hematite Fe2O3.  相似文献   

2.
The thermal decomposition of iron sulphate hexahydrate was studied by thermogravimetry at a heating rate of 5°C min?1 in static air. The kinetic parameters were evaluated using the integral method by applying the Coats and Redfern approximation. The thermal stabilities of the hydrates were found to vary in the order. Fe2(SO4)3·6H2O → Fe2(SO4)3·4.5H2O → Fe2(SO4)3·0.5H2O The dehydration process of hydrated iron sulphate was found to conform to random nucleation mass loss kinetics, and the activation energies of the respective hydrates were 89.82, 105.04 and 172.62 kJ mol?1, respectively. The decomposition process of anhydrous iron sulphate occurs in the temperature region between 810 and 960 K with activation energies 526.52 kJ mol?1 for the D3 model or 256.05 kJ mol?1 for the R3 model.  相似文献   

3.
The thermal decomposition of Prussian blue (iron(III) hexacyanoferrate) under inert atmosphere of argon was monitored by thermal analysis from room temperature up to 1000?°C. X-ray powder diffraction and 57Fe M?ssbauer spectroscopy were the techniques used for phase identification before and after sample heating. The decomposition reaction is based on a successive release of cyanide groups from the Prussian blue structure. Three principal stages were observed including dehydration, change of crystal structure of Prussian blue, and its decomposition. At 400?°C, a monoclinic Prussian blue analogue was identified, while at higher temperatures the formation of various polymorphs of iron carbides was observed, including an orthorhombic Fe2C. Increase in the temperature above 700?°C induced decomposition of primarily formed Fe7C3 and Fe2C iron carbides into cementite, metallic iron, and graphite. The overall decomposition reaction can be expressed as follows: Fe4[Fe(CN)6]3·4H2O????4Fe?+?Fe3C?+?7C?+?5(CN)2?+?4N2?+?4H2O.  相似文献   

4.
Thermal decomposition of different inorganic sulphates are presented. A number of techniques, but mainly TG and DTA, are used to prove the mechanism and kinetics of CaSO4, BaSO4, FeSO4·xH2O, Al2(SO4)3·xH2O under various gas atmospheres. It is shown how the partial pressure of gas components and heating rate may effect the mechanism and kinetic parameters. There are also examples on the effects of some additives and initial treatment on the thermal processes. On the base of the results obtained some recommendations are given concerning the precautions to be taken into account in the thermal decomposition studies and the sulphur recovering.  相似文献   

5.
Reactions in aqueous-alcoholic solution between diphenyl-4-amine barium sulphonate (Ba-DAS—anionic surfactant) and the hydrated sulphates of Fe(III) and Fe(II) ions and their use to ovtain iron oxides are described here. The formation of Fe(II) complexes was reached by using an excess of Ba-DAS, in absence of light under inert atmosphere. The complexes achieved Fe2[(C12H10NO3S)4]·9H2O and Fe3[(C12H10NO3S)6]·12H2O were characterized by TG/DTG and IR, UV-VIS and 57Fe-Mössbauer analyses.  相似文献   

6.
Films of low-density polyethylene grafted with various amounts of polyacrylic acid were prepared by the direct irradiation method, using a 10 MeV linear electron accelerator. Aqueous solutions of acrylic acid were used with FeSO4 · 7H2O as a redox system. The best graft/homopolymer ratios were obtained at radiation doses between 2 and 3 Mrad, at acrylic acid concentrations of 40–60% and at FeSO4 · 7H2O concentrations of 0.25-0.5% by weight. The grafted films were tested for reverse osmosis properties. A membrane with 60% polyacrylic acid content gave 87% salt rejection and a water flux of 0.75 × 10?5 gm/cm2 per sec.  相似文献   

7.
The Bi2Fe2(C2O4)5·5H2O was synthesized by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The nanocrystalline BiFeO3 was obtained by calcining Bi2Fe2(C2O4)5·5H2O at 600 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, FT-IR, X-ray powder diffraction, and vibrating sample magnetometer. The data showed that highly crystallized BiFeO3 with hexagonal structure [space group R3c(161)] was obtained when the precursor was calcined at 600 °C in air for 1.5 h. The thermal process of the precursor in air experienced five steps which involved, at first, the dehydration of an adsorption water molecule, then dehydration of four crystal water molecules, decomposition of FeC2O4 into Fe2O3, decomposition of Bi2(C2O4)3 into Bi2O3, and at last, reaction of Bi2O3 and Fe2O3 into hexagonal BiFeO3. Based on Starink equation, the values of the activation energies associated with the thermal process of Bi2Fe2(C2O4)5·5H2O were determined. Besides, the most probable mechanism functions and thermodynamic functions (ΔS , ΔH , and ΔG ) of thermal processes of Bi2Fe2(C2O4)5·5H2O were also determined.  相似文献   

8.
The kinetics of iron(II) sulfate oxidation with molecular oxygen on the 2% Pt/Sibunit catalyst was studied by a volumetric method at atmospheric pressure, T = 303 K, pH 0.33–2.4, [FeSO4] = 0.06?0.48 mol/l, and [Fe2(SO4)3] = 0?0.36 mol/l in the absence of diffusion limitations. Relationships were established between the reaction rate and the concentrations of Fe2+, Fe3+, H+, and Cl? ions in the reaction solution. The kinetic isotope effect caused by the replacement of H2O with D2O and of H+ with D+ was measured. The dependence of Fe2+ and Fe3+ adsorption on the catalyst pretreatment conditions was studied. A reaction scheme is suggested, which includes oxygen adsorption, the formation of a Fe(II) complex with surface oxygen, and the one-electron reduction of oxygen. The last step can proceed via two pathways, namely, electron transfer with H+ addition and hydrogen atom transfer from the coordination sphere of the iron(II) aqua complex. A kinetic equation providing a satisfactory fit to experimental data is set up. Numerical values are determined for the rate constants of the individual steps of the scheme suggested.  相似文献   

9.
The nonahydrate of iron(III) nitrate shows no phase transitions in the range of ?40 to 0 °C. Both hexahydrate Fe(NO3)3·6H2O and nonahydrate Fe(NO3)3·9H2O have practically the same thermal behavior. Thermal decomposition of iron nitrate is a complex process which has a different mechanism than those described for other trivalent elements. Thermolysis begins with the successive condensation of 4 mol of the initial monomer accompanied by the loss of 4 mol of nitric acid. At higher temperature, hydrolytic processes continue with the gradual elimination of nitric acid from resulting tetramer and dimeric iron oxyhydroxide Fe4O4(OH)4 is formed. After complete dehydration, oxyhydroxide is destroyed leaving behind 2 mol of Fe2O3. The molecular mechanics method provides a helpful insight into the structural arrangement of intermediate compounds.  相似文献   

10.
Thermal decomposition of iron(II) and cobalt(II) hexaborates has been investigated. The methods applied to investigate the process were differential thermal analysis, derivatography, crystallooptics and x-ray study. The following iron(II) hexaborate hydrates, FeO · 3B2O3 · 7.5H2O, FeO · 3B2O3 · 5H2O, FeO · 3B2O3 · 0.5H2O; iron(III) borates, Fe2O3 · 6B2O3 and 2Fe2O3 · B2O3; cobalt(II)hexaborate hydrates CoO · 3B2O3 · 7.5H2O, CoO · 3B2O3 · 5H2O, CoO · 3B2O3 · 0.5H2O, CoO · 3B2O3 and the decomposition product 2CoO · 3B2O3 have been isolated. Hepta- and semihydrates of cobalt(II) and iron(II) hexaborates have been proved to be isomorphous. It has been established that in the case of cobalt and iron hexaborates the exothermic maximum refers to a decomposition reaction and to the formation of a borate containing a smaller proportion of boron and boric anhydride.  相似文献   

11.
In order to elucidate the influence of preparative history of α-Fe2O3 on its reactivity, the catalytic thermal decomposition of KClO4 by α-Fe2O3 was studied by means of DTA and X-ray techniques. The catalysts were prepared by the calcination of three iron salts, Fe(OH)(CH3COO)2, FeSO4 ? 7H2O and Fe2(SO4)3 ? αH2O, at temperatures of 500–1200°C in air. The lower the preparation temperature of αFe2O3, the larger the specific surface area and reversely the smaller the crystalline size. KClO4 without α-Fe2O3 was found to begin fusion and decomposition simultaneously at about 530°C. The addition of αFe2O3 resulted in promotion of the decomposition reaction of KClO4; a lowering of 30–110°C in the initial decomposition temperature and a solid-phase decomposition before fusion of KClO4. The influence of preparative history of α-Fe2O3 on the decomposition mainly depended on the preparation temperature rather than the starting material. The initial decomposition temperature of KClO4 increased with an increase of the preparation temperature of α-Fe2O3. The effect of α-Fe2O3 was discussed on the basis of the charge transfer and the oxygen abstraction models.  相似文献   

12.
Investigation of the Hydrolytic Build‐up of Iron(III)‐Oxo‐Aggregates The synthesis and structures of five new iron/hpdta complexes [{FeIII4(μ‐O)(μ‐OH)(hpdta)2(H2O)4}2FeII(H2O)4]·21H2O ( 2 ), (pipH2)2[Fe2(hpdta)2]·8H2O ( 4 ), (NH4)4[Fe6(μ‐O)(μ‐OH)5(hpdta)3]·20.5H2O ( 5 ), (pipH2)1.5[Fe4(μ‐O)(μ‐OH)3(hpdta)2]·6H2O ( 7 ), [{Fe6(μ3‐O)2(μ‐OH)2(hpdta)2(H4hpdta)2}2]·py·50H2O ( 9 ) are described and the formation of these is discussed in the context of other previously published hpdta‐complexes (H5hpdta = 2‐Hydroxypropane‐1, 3‐diamine‐N, N, N′, N′‐tetraacetic acid). Terminal water ligands are important for the successive build‐up of higher nuclearity oxy/hydroxy bridged aggregates as well as for the activation of substrates such as DMA and CO2. The formation of the compounds under hydrolytic conditions formally results from condensation reactions. The magnetic behaviour can be quantified analogously up to the hexanuclear aggregate 5 . The iron(III) atoms in 1 ‐ 7 are antiferromagnetically coupled giving rise to S = 0 spin ground states. In the dodecanuclear iron(III) aggregate 9 we observe the encapsulation of inorganic ionic fragments by dimeric{M2hpdta}‐units as we recently reported for AlIII/hpdta‐system.  相似文献   

13.
The pyridine‐2‐carbaldehyde semicarbazone ligand (HL) reacts with iron(II) and copper(II) perchlorates in boiling ethanol to yield red‐violet [FeII(HL)2](ClO4)2·H2O ( 1 ) and light‐green crystals [CuII(HL)2](ClO4)2·H2O ( 2 ). The crystals are triclinic with the metal ions in an octahedral environment, coordinated to two nitrogen and one oxygen‐donor atom from HL. Electronic, magnetic and electrochemical properties are presented as well.  相似文献   

14.
A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of synthetic hydrotalcites reevesite (Ni6Fe2(CO3)(OH)16·4H2O) and pyroaurite (Mg6Fe2(SO4,CO3)(OH)16·4H2O) and the cationic mixtures of the two minerals. XRD patterns show the hydrotalcites are layered structures with interspacing distances of around 8.0. Å. A linear relationship is observed for the d(001) spacing as Ni is replaced by Mg in the progression from reevesite to pyroaurite. The significance of this result means the interlayer spacing in these hydrotalcites is cation dependent. High resolution thermal analysis shows the decomposition takes place in 3 steps. A mechanism for the thermal decomposition is proposed based upon the loss of water, hydroxyl units, oxygen and carbon dioxide.  相似文献   

15.
Chemical preparation of the bis(aqua) iron(III) metalloporphyrin [FeIII(TClPP)(H2O)2](SO3CF3)·2(Pnz)·3/4(C6H12)·2H2O (TClPP?=?TClPP?=?5,10,15,20-tetra(para-chlorophenyl)porphyrinato and Pnz?=?phenazine) coordination complex (I) was made. The crystal structure of (I) was determined by X-ray single-crystal diffraction and elucidated by Hirshfeld surface approach. Magnetic, spectroscopic and electrochemical properties were also reported and discussed. The mean equatorial distance (Fe–Np) between the iron(III) atom and porphyrin nitrogen atoms is appropriate to a high-spin (S?=?5/2) iron(III) complex. The high-spin state is also confirmed by both magnetic and electron paramagnetic resonance (EPR) spectroscopy data. The repetitive building unit of the crystal structure provides [FeIII(TClPP)(H2O)2]+ ion complexes, two non-coordinated Pnz molecules and two water molecules which are interconnected by O–H···O/N/Cl, C–H···O/F/Cl hydrogen bonds, and by C–X···π, C–H···π and ππ stacking intermolecular contacts, forming a 3D supramolecular network. The role and nature of these intermolecular interactions were quantitatively analysed by 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Cyclic voltammetry measurements indicate a one-electron reversible reduction wave with an E1/2 (Fe(III)/Fe(II) half-potential value of ?0.24 V, which confirms the high-spin S?=?5/2 state of the studied complex.  相似文献   

16.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

17.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

18.
A method to multifold increase the water solubility of diiron(III) tris[(hydroxyethylidene)-diphosphonate) tetrahydrate Fe2(H2L)3·4H2O and manganese(II) (hydroxyethylidene)diphosphonate dihydrate MnH2L·2H2O, prepared by the reaction of 1-hydroxyethylidene-1,1-diphosphonic acid with iron(III)hydroxide and basic manganese carbonate. The method involves conversion of the phosphonates into their double salts Fe2K6L3·4H2O [Fe2(NH4)6L3·4H2O] and MnK1.3H0.7L·2H2O [Mn(NH4)2L·2H2O] by treatment of their aqueous suspensions with potassium or ammonium hydroxides. The solubility of the iron salt increases from 0.2 to 4.0 g per 100 mL solution (20 times) and that of the manganese salt increases from 0.1 to 4.8 g per 100 mL solution (45 times).  相似文献   

19.
In den Systemen FeSO3? H2O und NiSO3? H2O konnten folgende Hydrate erhalten werden: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O und NiSO3 · 2 H2O. Die Gitterdaten der folgenden Hydrate wurden anhand von Einkristallmessungen bestimmt: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. Die IR- und Raman-Spektren sowie das Ergebnis thermoanalytischer Messungen (DTA, DTG, Röntgenheizaufnahmen) werden mitgeteilt. Die bei Sulfiten und Sulfithydraten zweiwertiger Metalle bisher beobachteten Strukturtypen werden diskutiert. Sulfites and Sulfite Hydrates of Iron and Nickel. X-ray, Thermoanalytical, I.R., and Raman Data In the systems FeSO3? H2O and NiSO3? H2O the following hydrates have been found: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O and NiSO3 · 2 H2O. The following crystal data have been determined by single crystal measurements: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. IR, Raman, and thermoanalytical (DTA, DTG, high temperature X-ray) data are presented. The structure types found for sulfites and sulfite hydrates of bivalent metals are discussed.  相似文献   

20.
The spinel Mn0.5Mg0.5Fe2O4 was obtained via calcining Mn0.5Mg0.5Fe2(C2O4)3·5H2O above 400 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, Fourier transform FT-IR, X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer, and vibrating sample magnetometer. The results showed that Mn0.5Mg0.5Fe2O4 obtained at 600 °C had a specific saturation magnetization of 46.2 emu g–1. The thermal decomposition of Mn0.5Mg0.5Fe2(C2O4)3·5H2O below 450 °C experienced two steps which involved, at first, the dehydration of five water molecules and then decomposition of Mn0.5Mg0.5Fe2(C2O4)3 into spinel Mn0.5Mg0.5Fe2O4 in air. Based on Starink equation, the values of the activation energies associated with the thermal decomposition of Mn0.5Mg0.5Fe2(C2O4)3·5H2O were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号