首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
Measurements of (p, ρ, T) for{xNH3 +  (1   x)H2O} at x =  (1.0000, 0.8374, 0.6005, and 0.2973) and at specified temperatures and pressures in the compressed liquid phase were carried out with a metal-bellows variable volumometer between T =  310 K and T =  400 K at pressures up to 17 MPa. The results cover the high-density region from ρ =  345 kg · m  3 for x =  1.0000 to ρ =  878 kg · m   3for x =  0.2973. The experimental uncertainties at a 95 per cent confidence interval in temperature T, pressure p, density ρ, and mole fraction x were estimated to be less than  ± 11 mK,  ± 2.6 kPa,  ± 2.1 · 10   3. ρ, and  ± 1.8 · 10  3· x, respectively. A detailed comparison of the density values with literature data as well as with an equation of state proposed by Tillner-Roth and Friend is also reported.  相似文献   

8.
9.
10.
11.
12.
13.
Comprehensive (p, ρ, T) measurements on two binary mixtures (0.10 CO2 + 0.90 N2 and 0.15 CO2 + 0.85 N2) were carried out in the gas phase at seven isotherms between (250 and 400) K and pressures up to 20 MPa using a single sinker densimeter with magnetic suspension coupling. A total of 69 (p, ρ, T) data for the first mixture and 69 (p, ρ, T) data for the second are presented in this article. The uncertainty in density was estimated to be (0.02 to 0.15)%, while the uncertainty in temperature was 3.9 mK and the uncertainty in pressure was less than 0.015% (coverage factor k = 2). Experimental results were compared with densities calculated from the GERG equation of state and with data reported by other authors for similar mixtures. Results yielded that, while deviations between experimental data and values calculated from the GERG equation were lower than 0.05% in density for low pressures, the relative error at high pressures and low temperatures increased to about (0.2 to 0.3)%. The main aim of this work was to contribute to an accurate density data base for CO2/N2 mixtures and to check or improve equations of state existing for these binary mixtures.  相似文献   

14.
A flow mixing calorimeter, followed by a vibrating tube densimeter, has been used to measure excess molar enthalpies HmEand excess molar volumesVmE of {xCO2 +  (1   x)SF6}. Measurements over a range of mole fraction x have been made at the temperatures T =  302.15 K and T =  305.65 K at the pressures (3.76, 5.20, 6.20, and 7.38) MPa. The lowest pressure 3.76 MPa is close to thecritical pressure of SF6 and the highest pressure 7.38 MPa is close to the critical pressure of CO 2. Measurements atx =  0.5 have been made over the pressure range (2.5 to 10.0) MPa at the temperature 301.95 K. Some of the measurements are very close to the critical locus of the mixture. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6} and{xCO2 +  (1   x)C2H4} . The equation was used to calculate residual enthalpies and residual volumes for the pure components and for the mixture, and inspection of the way these combine to give excess enthalpies and volumes assisted the interpretation of the pressure scan measurements.  相似文献   

15.
The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.  相似文献   

16.
17.
The temperature dependence of the standard molar heat capacity Cp, moof samples of crystalline tetraphenylphosphonium perchlorate and tetraphenylarsonium perchlorate was measured in an adiabatic low-pressure calorimeter between T =  4.8 K and T =  340 K and from T =  5.8 K to T =  340 K, respectively, mostly to within a precision of 0.2 per cent. For tetraphenylphosphonium perchlorate, an anomalous change of the heat capacity in the range T =  125 K to T =  185 K, probably arising from the excitation of hindered rotations of atomic groups, was found and its thermodynamic characteristics were determined. No such anomaly was observed for tetraphenylarsonium perchlorate. The data obtained were used to calculate the thermodynamic functions Cp, mo(T) / R, Δ0THmo / R·K, Δ0TSmo / R, and Φmo = Δ0TSmo  Δ0THmo / T(where R is the universal gas constant) of the compounds between T   0 and T =  340 K.  相似文献   

18.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

19.
20.
Measurements of the isobaric specific heat capacity of {xH2O + (1 ? x)NH3} with x = (0.0000, 0.1566, 0.1597, 0.3030, 0.3048, 0.4956, 0.7061, and 0.8489) were carried out by the calorimeter with the thermal relaxation method, which we have developed, at T = (280, 300, 320, and 360) K over the pressure range from (0.1 to 15) MPa. The comparison of the present cp values with the literature data as well as the calculated cp values by the equations of state (EoS) is presented. The behaviour of the present cp values are correlated as a function of temperature, and mole fraction, at p = 5 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号