首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through (1)H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP.  相似文献   

2.
N-heterocyclic carbene (NHC) ligands are a versatile and useful class of ligands that have enjoyed much success over the past few decades in organometallic chemistry. This fact is exemplified most convincingly in Grubbs 2nd generation olefin metathesis catalysts. We explore the electronic impact of the NHC-ligand by decoupling electronic and steric effects through simplified model N-heterocyclic carbenes. Saturated and unsaturated N-heterocyclic carbene ligands give rise to fundamentally different frontier orbitals in these catalysts, suggesting a need to classify them as two electronically distinct ligand classes.  相似文献   

3.
The synthesis of alkoxotitanium(IV) and -zirconium(IV) complexes of seven chelating tetradentate di- or trianionic amine-phenolate ligands belonging to three families and their application in L-lactide polymerization are described. The isopropoxotitanium complexes were synthesized by a direct reaction between the ligand precursors and titanium tetraisopropoxide, whereas the zirconium complexes were synthesized by various routes. For titanium, complexes of all seven ligands could be synthesized. For zirconium, the hexacoordinate complexes derived from all dianionic ligands were synthesized; however, the only pentacoordinate complex that could be produced was the one derived from the bulky trianionic ligand. X-ray structures of zirconium complexes of the three families indicated a substantial pi donation from the alkoxo ligand to the metal. All complexes were found to be active lactide polymerization catalysts, and their activity was found to depend strongly on the metal, the coordination number around the metal, and the phenolate substituents but not on the ligand backbone.  相似文献   

4.
Air-stable and readily available ruthenium benzylidene complexes of the general type [RuCl2(=CHPh)(L)(L')] (L, L' = PCy3 and/or N-heterocyclic carbene) constitute a new class of catalyst precursors for atom-transfer radical polymerization (ATRP) of methyl methacrylate and styrene, and provide an unprecedented example for the involvement of ruthenium alkylidenes in radical reactions. They promote the polymerization of various monomers with good to excellent yields, and in a controlled way with methyl methacrylate and styrene. Variations of their basic structural motif provide insights into the essential parameters responsible for catalytic activity. The ligands L (PCy3 and/or N-heterocyclic carbene) turned out to play a particularly important role in determining the rate of the polymerizations. A similarly pronounced influence is exerted by the substituents on the N-heterocyclic carbene. Our results indicate that the catalysts decompose quickly under ATRP conditions, and polymerizations are mediated by both [RuCl2(=CHPh)(L)(L')] complexes and ruthenium species bereft of the benzylidene moiety, through a pathway in which both tricyclohexylphosphane and/or N-heterocyclic carbene ligands remain bound to the metal center. Polymerization of n-butyl acrylate and vinyl acetate is not controlled and most probably takes place through a redox-initiated free-radical process.  相似文献   

5.
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.  相似文献   

6.
Hydrogen has been shown to be a true chain-transfer agent with some organometallic olefin polymerization catalysts. However, the Mayo equation for chain transfer in free-radical polymerization does not fit quantitative data from organometallic catalysts. There appear to be two reasons for the lack of fit. First, the Mayo equation considers the competition between hydrogen and olefin for the growing chain but does not account for their competitive absorption on the catalyst (coordination with vacant orbitals on the transition metal). Second, some organometallic catalysts gradually absorb hydrogen irreversibly to give a new catalyst species of altered behavior.  相似文献   

7.
Until now niobium compounds have been very rarely applied for the polymerization of olefins, notwithstanding their moderate cost, limited toxicity and the large availability of stable oxidation states, which makes them versatile precursors. The data reported to date on ethylene and norbornene polymerization catalysts are discussed, with particular reference to the evolution of the approach to the design of these systems, starting from isoelectronic, isolobal or isostructural relationships with Group 4 metallocene catalysts. The catalytic performances in ethylene and norbornene polymerization of the niobium precursors with cyclopentadienyl, diene, amido, amidinate, pyrazolylborate ligands have been compared. The most recent results have been discussed, comparing the reported activities for complexes with phenolate, bis(imino)pyridine and N,N-dialkylcarbamate ligands.Significant improvements in norbornene ROMP have been recently achieved, whilst for ethylene polymerization the process of optimization of the niobium-based catalytic systems still needs hard work.  相似文献   

8.
A highly efficient route to a new class of organometallic polymers containing difunctional N-heterocyclic carbenes has been developed. Bis(imidazolium) halides and divalent group X metals were copolymerized to afford organometallic polymers in up to quantitative yields and with molecular weights up to 10(6) Da, depending on the structure of the N-heterocyclic carbene and the incorporated transition metal. Enhanced solubilities were demonstrated through post-polymerization ligation with phosphines. Finally, selective end-group functionalization and excellent molecular weight control was achieved through the inclusion of monofunctional chain transfer agents during the polymerization.  相似文献   

9.
This tutorial review presents the synthesis, chemistry and applications of functionalised N-heterocyclic carbenes NHC and their transition metal complexes. Functionalised NHC comprise those carrying a phosphino-, amino-, imino- or oxygen-containing functionality on the imidazole sidechain. Main applications have been the modification of catalysts and their immobilisation by fixation on a polymeric support using the functional group. Whereas the functionalisation of the NHC has not improved their performance in catalysis, new developments have occurred in the use of imidazole-containing biomolecules such as L-histidine or caffeine as precursors for NHC.  相似文献   

10.
The reaction of some organometallic complexes with the surfaces of inorganic oxides leads to the formation of surface organometallic complexes, chemically bound to the surface yet retaining many features of their molecular structure. These surface organometallic complexes can therefore be considered to belong to both the molecular and solid states. In cases where such complexes have been structurally characterised, their reactivity can be interpreted with molecular concepts. In this review article, the stoichiometric and catalytic reactivity of some relatively well-defined surface organometallic fragments is surveyed. Many elementary steps which have precedent in molecular organometallic chemistry and homogeneous catalysis have now been demonstrated with surface organometallic fragments, including reversible ligand binding, oxidative addition, reductive elimination, protonation, heterolytic metal—carbon bond cleavage, electrophilic CH bond activation and insertion into metal—carbon bonds. In some cases, the supported organometallic complexes are highly effective low temperature catalysts, a phenomenon which is not always observed with molecular analogues nor with conventionally prepared heterogeneous catalysts. Applications of surface organometallic chemistry to catalytic alkane hydrogenolysis, olefin isomerisation and hydrogenation, the Fischer—Tropsch synthesis and the water—gas shift reaction are discussed. Proposed mechanisms for several representative catalytic cycles are presented.  相似文献   

11.
New N-heterocyclic olefins (NHOs) are described with functionalization on the ligand heterocyclic backbone and terminal alkylidene positions. Various PdII–NHO complexes have been formed and their use as pre-catalysts in Buchwald–Hartwig aminations was explored. The most active system for catalytic C−N bond formation between hindered arylamine and arylhalide substrates was accessed by combining a backbone methylated NHO with [Pd(cinnamyl)Cl]2 in the presence of NaOtBu as a base. In these active systems evidence suggests that catalysis is mediated by colloidal palladium metal, highlighting a different coordination ability of NHOs in comparison with commonly used N-heterocyclic carbene co-ligands.  相似文献   

12.
The synthesis of N-heterocyclic carbene (NHC) adducts by condensation of diamines with appropriately substituted benzaldehydes is described. This simplified approach provides the NHC adduct without first having to generate the carbene followed by its protection. These adducts undergo thermal deprotection to generate N-heterocyclic carbene in situ. Adduct decomposition temperatures were investigated as a function of catalyst structure by using thermal analysis and spectroscopic techniques. Importantly, unlike adducts derived from chloroform, the new pentafluorobenzene-based adducts are more readily prepared and are stable at room temperature. The utility of these adducts as organic catalyst precursors for living ring-opening polymerization (ROP) of lactide, transesterification reactions, and the synthesis of N-heterocyclic carbene ligated organometallic complexes is also described.  相似文献   

13.
A new, general patterning methodology that may allow for the preparation of site-isolated organometallic catalysts on a silica surface is reported. The technique is demonstrated with Group 4 polymerization catalysts. The catalysts synthesized via the patterning method have up to a 10-fold increase in activity as compared to materials prepared by traditional techniques. In addition to supporting Group 4 polymerization catalysts, the patterned aminosilica is a possible support for other metal complexes, allowing for the synthesis of a wide array of immobilized single-site organometallic catalysts.  相似文献   

14.
Metal oxides molecularly deposited on high surface area supports may be one of the most promising catalysts from the viewpoint of effective use of resources and may also be of great interest from the viewpoint of new surface/interface chemistry. On the support surfaces unique structures of active sites are possible to create. The metal sites prepared by the attachment of suitable organometallic precursors are also affected electronically through a direct interaction at interface. Such molecularly designed active structures can be well characterized by means of EXAFS. The tailored metal catalysts may have great advantages for a deeper understanding of essential factors or origin of solid catalysis and catalyst design on a molecular level.  相似文献   

15.
Molecular catalysts for organic synthesis should be constructed to be tailored to target reactions and their desirable conditions. In our search for them, we have studied new types of transition metal molecular catalysts dressed with a tridentate N,C,N modular ligand, which consists of a C2-symmetric side-by-side phenyl group with chiral bis(oxazolinyl) substituents. The ligand, 2,6-bis(oxazolinyl)phenyl abbreviated as Phebox, can connect covalently to transition metals by the central carbon atom. Here, we review our recent work on the chemistry of Phebox and its metal complexes, including preparation, structural analysis, asymmetric Lewis acid catalysis, asymmetric hydrosilylation, asymmetric conjugate reduction, asymmetric reductive aldol reaction, and organometallic reactions.  相似文献   

16.
The application of heavy-metal complexes in bulk-heterojunction (BHJ) solar cells is a promising new research field which has attracted increasing attention, due to their strong spin-orbit coupling for efficient singlet to triplet intersystem crossing. This review article focuses on recent advances of heavy metal complex containing organic and polymer materials as photovoltaic donors in BHJ solar cells. Platinum-acetylide containing oligomersor and polymers have been firstly illustrated due to the good solubility, square planar structure, as well as the fairly strong Pt-Pt interaction. Then the cyclometalated Pt or Ir complex containing conjugated oligomers and polymers are presented in which the triplet organometallic compounds are embedded into the organic/polymer backbone either through cyclometalated main ligand or the auxiliary ligand. Pure triplet small molecular cyclometalated Ir complex are also briefly introduced. Besides the chemical modification, physical doping of cyclometalated heavy metal complexes as additives into the photovoltaic active layers is finally demonstrated.  相似文献   

17.
In recent years, N-heterocyclic carbenes (NHC) have proved to be a versatile class of spectator ligands in homogeneous catalysis. Being robust anchoring functions for late transition metals, their ligand donor capacity and their molecular shape is readily modified by variation of the substituents at the N-atoms and the structure of the cyclic backbone. After the first attempts to use chiral NHC ligands in asymmetric catalysis in the late 1990's, which initially met with limited success, several novel structural concepts have emerged during the past two years which have led literally to an explosion of the field. With a significant number of highly selective chiral catalysts based on chiral NHCs having been reported very recently, several general trends in the design of new NHC-containing molecular catalysts for stereoselective transformations in organic synthesis emerge.  相似文献   

18.
The appealing properties of N-heterocyclic carbenes (NHC) as ancillary ligands and the high potential of gold as an organometallic catalyst have made their encounter inevitable. Still in its infancy, NHC-gold catalysis is nevertheless growing rapidly. In this tutorial review, catalytic transformations involving NHC-containing gold(i) and gold(iii) complexes are presented. Particular attention is drawn to the versatility and selectivity of these catalysts.  相似文献   

19.
The field of supramolecular assemblies has developed rapidly in the last few decades, thanks in a large part to their diverse applications. These assemblies have been mostly based on Werner-type coordination motifs in which metal centres are coordinated by nitrogen or oxygen donors. Recently, N-heterocyclic carbene(NHC) ligands have been employed as carbon donors not only because of their appealing structures but also due to the extensive applications in catalysis, biomedicine and material science of the resulting assemblies. During the last decade, NHC-based supramolecular assemblies have witnessed rapid growth and extensive application in molecular recognition, luminescent materials and catalysis. For different topological systems, a diverse selection of poly-NHC precursors and synthetic strategies is crucial to precisely control the synthesis of supramolecular architectures. Several synthetic strategies have been developed to synthesise two-dimensional(2D) molecular metallacycles and three-dimensional(3D) metallacages from a wide range of poly-NHC precursors, including a straightforward one-pot strategy,supramolecular transmetalation, stepwise synthesis, an improved one-pot strategy involving self-sorting behaviour of 3D metallacages and a subtle variation strategy of poly-NHC ligand precursors. This review offers a summary of the synthetic strategies applied for the construction of different poly-NHC-based supramolecular assemblies, particularly emphasizes recent progress in the synthesis of large and complex supramolecular assemblies from poly-NHC precursors, and further attention is given to their application in postsynthetic modifications(PSMs), host-guest chemistry, luminescent properties and biomedical applications.  相似文献   

20.
Chemical modification of polymers via catalysis has recently emerged as an area of increasing importance in macromolecular chemistry. It provides an efficient synthetic route for the production of novel polymers with desirable physical properties and functional groups which are often inaccessible by conventional polymerization techniques. Diene-based polymers and copolymers are ideal for chemical modification because of the technological importance associated with the parent materials and the reactivities of the double bonds in the polymer chain. In employing organometallic catalysts for such modifications, it has been found that the ligand environment of the catalyst as well as the functionality of the polymer has a profound effect on the nature of the macromolecule-metal complex interaction and the resulting polymer modification. The importance of the macromolecule metal complex interactions and the design of appropriate catalyst systems is illustrated for the hydrogenation, hydroformylation/hydroxymethylation and hydrosilylation of a number of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号