首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper outlines the shrinkage of electrospun polyvinylpyrrolidone (PVP) fiber mats during thermal treatment. The thermal behavior and phase changes within the fibers were investigated by DSC and TGA/DTA. Five precursors with different PVP loading in ethanol were electrospun. The mats shrinkage as function of temperature was measured in the RT–200 °C range. Shrinkage rate drastically increased above the polymer glass transition point, Tg (150–180 °C), due to increase in polymer chain mobility. Mats shrinkage at 200 °C as function of PVP concentration showed a minimum at ∼10%wt. Below 10% PVP the mats morphology is non‐uniform, consisting of beads and fibers. Above 10% PVP, only flat and uniform fibers were observed. This paper outlines the dominant mechanism governing the mats shrinkage during heating. In addition, the effect of PVP concentration on the expansion of fibers diameter was investigated and found to be consistent with the linear shrinkage observing a minimum at ∼10% PVP. The effect of applied voltage on mat shrinkage was investigated, and showed a minimum at 12 kV. Understanding the interplay between fibers morphology and thermal shrinkage allows precursor composition and system optimization needed for minimizing shrinkage negative effects on the structure and properties of electrospun fiber mats. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 248–254  相似文献   

2.
In this work, we studied solvent-induced polymer degradation and its effect on the morphology of electrospun fibers. Nylon-6 in formic acid solvent was allowed to degrade by simply allowing it to stand for a long time, and nanofibrous mats were fabricated by taking a fraction of this solution at different time intervals via electrospinning under the same electrospinning conditions. FE-SEM images of the mats indicate that the nanofiber diameter gradually decreased with the standing time of solution, and large numbers of true nano fibers (<50 nm in diameter) were obtained. MALDI-TOF analysis revealed that the formation of low-molecular weight ions was caused by solvent degradation. FT-IR, DSC, XRD, and TGA analyses of electrospun mats showed that some physical properties, such as bond strength, crystallinity, and thermal stability also depended on solvent degradation. The obtained sub-nanofibrous mat has potential applications in different bioengineering fields.  相似文献   

3.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
With the ability to form a submicron-sized fibrous structure with interconnected pores mimicking the extracellular matrix (ECM) for tissue formation, electrospinning was used to fabricate ultra-fine fiber mats of hexanoyl chitosan (H-chitosan) for potential use as skin tissue scaffolds. In the present communication, the in vitro biocompatibility of the electrospun fiber mats was evaluated. Indirect cytotoxicity evaluation of the fiber mats with mouse fibroblasts (L929) revealed that the materials were non-toxic and did not release substances harmful to living cells. The potential for use of the fiber mats as skin tissue scaffolds was further assessed in terms of the attachment and the proliferation of human keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) that were seeded or cultured on the scaffolds at different times. The results showed that the electrospun fibrous scaffolds could support the attachment and the proliferation of both types of cells, especially for HaCaT. In addition, the cells cultured on the fibrous scaffolds exhibited normal cell shapes and integrated well with surrounding fibers. The obtained results confirmed the potential for use of the electrospun H-chitosan fiber mats as scaffolds for skin tissue engineering.  相似文献   

5.
This study describes the preparation and characterization of nanofibrous mats obtained by electrospinning poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane (TFA/DCM). Special attention was paid to the effect of polymer concentration and solvent properties on the morphology, structure, and mechanical and thermal properties of the electrospun nonwovens. The results show that the spinnable concentration of PET solution in TFA/DCM solvents is above 10 wt %. Mats have nanofibrous morphology with fibers having an average diameter in the range of 200–700 nm (depending on polymer concentration and solvent composition) and an interconnected pore structure. Higher solution concentration favors the formation of uniform fibers without beads and with higher diameter. Morphology and fiber assembly changed with the solvent properties. Solvent mixtures rich in TFA, i.e., those with higher dielectric constant and lower surface tension, originated fibers with small diameter. However, due to the lower volatility, those solvent mixtures also produced more branched and crosslinking fibers, with less morphologic uniformity. Mechanical properties (Young's modulus, ultimate strength, and elongation at break) and thermal properties (glass transition, crystallization, and melting) have been studied for the PET electrospun nanomats and compared with those of the original polymer. Solvent effect on fiber crystallinity was not significant, but a complex effect was observed on the mechanical properties of the electrospun mats, as a consequence of the different structural organization of the fibers within the mat network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 460–471, 2008  相似文献   

6.
郭睿  史向阳 《高分子科学》2016,34(9):1047-1059
In this study, multiwalled carbon nanotubes (MWCNTs) were used to encapsulate a model anticancer drug, doxorubicin (Dox). Then, the drug-loaded MWCNTs (Dox/MWCNTs) with an optimized drug encapsulation percentage were mixed with poly(lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The structure, morphology, and mechanical properties of the formed electrospun Dox/PLGA, MWCNTs/PLGA, and Dox/MWCNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the MWCNTs/PLGA fibrous scaffolds demonstrate that the developed MWCNTs/PLGA composite nanofibers are cytocompatible. The incorporation of Dox-loaded MWCNTs within the PLGA nanofibers is able to improve the mechanical durability and maintain the three-dimensional structure of the nanofibrous mats. More importantly, our results indicate that this double-container drug delivery system (both PLGA polymer and MWCNTs are drug carriers) is beneficial to avoid the burst release of the drug and able to release the antitumor drug Dox in a sustained manner for 42 days. The developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for post-operative local chemotherapy.  相似文献   

7.
The enthalpy relaxation of poly(hydroxyethyl methacrylate) (PHEMA), poly(ethyl methacrylate) (PEMA) and poly(ethyl acrylate) (PEA) networks, obtained by DSC, are compared. The temperature interval of the glass transition broadens in the sequence PEA-PEMA-PHEMA. The plots of the enthalpy loss during the annealing for 200 min at different temperatures below Tg show that the structural relaxation process also takes place in PHEMA in a broader temperature interval than in PEA or PEMA. The modelling of the structural relaxation process using a phenomenological model allows determining the temperature dependence of the relaxation times concluding that the fragility in PHEMA is significantly lower than in PEMA. Both features are ascribed to the connectivity of the polymer chains in PHEMA via hydrogen bonding. The role of the presence of the methyl group bonded to the main chain is analysed by comparing the results obtained in PEA and PEMA.  相似文献   

8.
静电纺丝法制备聚甲醛纳米纤维   总被引:9,自引:0,他引:9  
以六氟异丙醇为溶剂, 用静电纺丝的方法制备了聚甲醛纳米纤维. 利用场发射扫描电镜对纤维形貌进行了表征, 纤维的直径为0.3~1.2 μm. 讨论了溶液浓度、接收距离、电压和温度等纺丝参数对纤维形貌的影响. 用DSC方法对电纺纤维膜的结晶性能进行了研究, 并与溶液浇铸膜的进行了比较. 结果表明, 电纺纤维膜的熔点与溶液浇铸膜的相同, 与溶液的浓度无关, 但结晶度比溶液浇铸膜的低. 力学性能用拉伸试验进行了测试, 观察到很长的断裂伸长率.  相似文献   

9.
In this work, we evaluate the physical properties of nylon 6 nonwoven mats produced from solutions with formic acid. Nonwoven electrospun mats from various solutions with different concentration are examined regarding their morphology, pore size, surface area, and gas transport properties. Each nonwoven mat with average fiber diameters from 90 to 500 nm was prepared under controlled electrospinning process parameters. From the results, it was observed that the fiber diameter was strongly affected by the polymer concentration (polymer viscosity). In additional the results showed that the pore size, Brunauer-Emmett-Teller (BET) surface area, and gas transport property of electrospun nylon 6 nonwoven mats were affected by the fiber diameter.  相似文献   

10.
Electrospinning is a process that employs a high static electrical potential to produce polymeric fibers of nanoscale diameter. The process has been utilized to achieve color change by electrospinning black polymer solutions to produce white fiber mats. When subsequently heated, the electrospun mats undergo a color change from white to black. This phenomenon is demonstrated with three polymer/solvent systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 752–757, 2004  相似文献   

11.
Analysis of the thermo-mechanical behavior of electrospun thermoplastic polyurethane (TPU) block co-polymer nanofibers (glass transition temperature ∼−50 °C) is presented. Upon heating, nanofibers began to massively contract, at ∼70 °C, whereas TPU cast films started to expand. Radial wide-angle X-ray scattering (WAXS) profiles of the nanofibers and the films showed no diffraction peaks related to crystals, whereas their amorphous halo had an asymmetric shape, which can be approximated by two components, associated with hard and soft segments. During heating, noticeable changes in the contribution of these components were only observed in nanofibers. These changes, which were accompanied with an endothermic DSC peak, coinciding with the start of the nanofibers contraction, can be attributed to relaxation of an oriented stretched amorphous phase created during electrospinning. Such structure relaxation becomes possible when a portion of the hard segment clusters, forming an effective physical network, is destroyed upon heating.  相似文献   

12.
In this work, different fractions of solvent-induced polymer degraded solution were mixed with freshly prepared solution of same polymer, and its effect on fiber morphology of electrospun mats was investigated. Nylon-6 solution in formic acid was allowed to degrade for 3 weeks and different fractions of it were mixed with freshly prepared nylon-6 solution to get the electrospun mats. FE-SEM images of the mats indicated that the a large amount of sub-nanofibers (<50 nm in diameter) in the form of spider-net like structures were achieved by tailoring the amount of solvent degraded polymer solution in the freshly prepared nylon-6 solution. Large quantity of these ultrafine sub-nanofibers present in electrospun nylon-6 mats could increase its hydrophilicity and mechanical strength. The decreased average pore diameter and increased BET surface area of the mat, caused by spider-net like structure, can make it as a potential candidate for air/water filtration.  相似文献   

13.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions.  相似文献   

14.
The effect of the side‐chain length (short side chain and long side chain, SSC and LSC, respectively) of perfluorosulfonic acid (PFSA) ionomers on the properties of nanofibers obtained by electrospinning ionomer dispersions in high dielectric constant liquids has been investigated with a view to obtaining electrospun webs as components of fuel cell membranes. Ranges of experimental conditions for electrospinning LSC and SSC PFSAs have been explored, with a scoping of solvents, carrier polymer and PFSA ionomer concentrations, and carrier polymer molecular weight. Under optimal conditions, the electrospun mats derived from SSC and from LSC PFSA show distinct fiber dimensions that arise from the different chain lengths of the respective ionomers. Enhanced interchain interactions in SSC PFSA with low equivalent weight compared to LSC PFSA result in a considerably lower average fiber diameter and a markedly narrower fiber size distribution. The proton conductivity of nanofiber mats of SSC and LSC PFSA with equivalent weights of 830 and 900 g mol?1, respectively, are 102 and 58 mS cm?1 at 80°C and 95% relative humidity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
In this paper, the charge storage performance of electrospun poly(ethylene terephthalate) (PET) mats with high specific surface area was evaluated in comparison to that of PET film electrets. Corona discharge method was used to charge the electrospun PET mats and PET films. The surface potential decay measurements revealed that the corona charged РЕТ mats had higher initial values for the normalized surface potential compared to the РЕТ electret films. A tendency for stabilization of the electret charge to one and the same value for all charged samples (mats and films) after the 50th day was observed. The peaks at 90 °C in the thermally stimulated current (TSC) spectra of uncharged and charged in corona discharge electrospun PET mats were observed and attributed to a relaxation of the separated space charges, the dipole disorientation or injected charges within the bulk. It was found that the value of the storage charge in a corona charged electrospun PET mats was higher than that in PET mats prepared by electrospinning.  相似文献   

16.
  Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform. Field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats. It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads, while microfibers could be electrospun at the concentration of 22 wt%. The hydrophobicity of the electrosprayed/electrospun PSLG mats was investigated with static water contact angle (WCA) and tilt angle measurements. It was demonstrated that the superhydrophobic surfaces of PSLG with WCAs and tilt angles in the ranges of 150°-170° and 16.5°-4.2°, respectively, were obtained through electrospraying/electrospinning process.  相似文献   

17.
Electrospun thermoplastic polyurethane (TPU) copolymer nanofiber mats are known to contract considerably upon heating up to ~90 °C, whereas cast TPU films expand as expected. This work examined contraction in single electrospun nanofibers. In contrast to nanofiber mats, where mat contraction appears like a critical phenomenon, no temperature threshold for contraction was measured for a single electrospun nanofiber. Unexpectedly, we demonstrate that cast TPU films can also massively contract upon heating, but only after thermomechanical programming which relies on film stretching (~100%) at a high temperature (~90 °C). This nonequilibrium stretched state is highly preserved, despite sample temperatures that significantly exceeded the glass transition temperature of the soft phase, and hard segments concentration in the TPU macromolecules is too low to form a percolated “solid” system. A possible physical explanation of the observed phenomenon is proposed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1254–1259  相似文献   

18.
Nanofibers of poly[bis(2,2,2-trifluoroethoxy)phosphazene] were produced by electrospinning from solutions in tetrahydrofuran, methylethyl ketone, and acetone. The fiber diameter varied from 80 nm to 1.4 microm by changes in the concentration of the polymer solution. The electrospun nonwoven mats showed enhanced surface hydrophobicity compared to spun cast films with up to a 55 degrees increase in water contact angle. The hydrophobicity varied with fiber diameter and surface morphology, with contact angles to water being in the range of 135 degrees -159 degrees. A low value of hysteresis (<4 degrees) was recorded for the superhydrophobic surfaces. The extremely high hydrophobicity of these mats is a combined result of a fluorinated surface and the inherent surface roughness of an electrospun mat.  相似文献   

19.
This study was aimed at investigating emulsion electrospinning to prepare biodegradable fibrous mats with encapsulation of human-nerve growth factor (NGF). One of the best methods for fabricating a bio-functional tissue engineering scaffold is to load bioactive agent into the scaffold. In this work, the feasibility of incorporating NGF into poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning has been studied. The release behavior of encapsulated bovine serum albumin (BSA) was investigated. The bioactivity of NGF released from fibrous mats was verified by testing the neurite outgrowth of rat pheochromocytoma cells (PC12). Furthermore, the process of fiber forming during emulsion electrospinning was discussed. The results demonstrate that emulsion electrospun fibers can successfully encapsulate proteins and release them in a sustained manner. The bioactivity of NGF released from emulsion electrospun fibers was confirmed by PC12 bioassays.  相似文献   

20.
Poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), Nylon 6, and Nylon 6,6 have been electrospun successfully. The nanofibers have been characterized by scanning electron microscopy (SEM), confirming the presence of bead free and fiber‐bead free morphologies. Thermogravimetric analysis (TGA) indicated differences between the thermal stability of PMMA nanofibers and PMMA powder. However, no significant differences were observed between the starting physical form (powder or pellet) of PVC, Nylon 6 and Nylon 6,6, and their corresponding electrospun nanofibers. Differential scanning calorimetry (DSC) demonstrated a lower glass transition temperature (Tg) and water absorption for PMMA electrospun nanofibers. Furthermore, electrospun Nylon 6 and Nylon 6,6 had a slight decrease in crystallinity. Tensile testing was performed on the electrospun nanofibers to obtain the Young modulus, peak stress, strain at break, and energy to break, revealing that the non‐woven mats obtained had modest mechanical properties that need to be enhanced. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号