首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\)) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.  相似文献   

2.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

3.
We consider the Prandtl boundary layer equations on the half plane, with initial datum that lies in a weighted H1 space with respect to the normal variable, and is real-analytic with respect to the tangential variable. The boundary trace of the horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum lies within \({\varepsilon}\) of a stable profile, then the unique solution of the Cauchy problem can be extended at least up to time \({T_{\varepsilon} \geqq {\rm exp}(\varepsilon^{-1} / {\rm log}(\varepsilon^{-1}))}\).  相似文献   

4.
We consider a family of linearly elastic shells with thickness \(2\varepsilon\) (where \(\varepsilon\) is a small parameter). The shells are clamped along a portion of their lateral face, all having the same middle surface \(S\), and may enter in contact with a rigid foundation along the bottom face.We are interested in studying the limit behavior of both the three-dimensional problems, given in curvilinear coordinates, and their solutions (displacements \(\boldsymbol{u}^{\varepsilon}\) of covariant components \(u_{i}^{\varepsilon}\)) when \(\varepsilon\) tends to zero. To do that, we use asymptotic analysis methods. On one hand, we find that if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), a suitable approximation of the variational formulation of the contact problem is a two-dimensional variational inequality which can be identified as the variational formulation of the obstacle problem for an elastic membrane. On the other hand, if the applied body force density is \(O(\varepsilon^{2})\) and surface tractions density is \(O(\varepsilon^{3})\), the corresponding approximation is a different two-dimensional inequality which can be identified as the variational formulation of the obstacle problem for an elastic flexural shell. We finally discuss the existence and uniqueness of solution for the limit two-dimensional variational problems found.  相似文献   

5.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

6.
Let \({S\subset\mathbb{R}^2}\) be a bounded Lipschitz domain and denote by \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\) the set of mappings \({u\in W^{2,2}(S;\mathbb{R}^3)}\) which satisfy \({(\nabla u)^T(\nabla u) = Id}\) almost everywhere. Under an additional regularity condition on the boundary \({\partial S}\) (which is satisfied if \({\partial S}\) is piecewise continuously differentiable), we prove that the strong W 2,2 closure of \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)\cap C^{\infty}(\overline{S};\mathbb{R}^3)}\) agrees with \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\).  相似文献   

7.
In this paper, we construct linearly stable quasi-periodic breathers for the Hamiltonian systems in the form \({{\rm i} \dot{q}_n+v_n q_n+\delta|q_n|^2q_n+\varepsilon_n \left(q_{n+1}+q_{n-1} \right)=0,\quad n \in \mathbb{Z}}\) where \({\{v_n\}_{n \in \mathbb{Z}}}\) is a family of time independent identically distributed (i.i.d) random variables with common distribution \({g = dv_n, v_n \in [0,1]}\) and \({|\varepsilon_n| \leq \varepsilon e^{-\varrho |n|}}\) with \({\varepsilon,\varrho > 0}\) . We prove that for \({\varepsilon, \delta}\) sufficiently small, the equation admits a family of small-amplitude and linearly stable, time quasi-periodic solutions for most of the parameters \({\{v_n\}_{n \in \mathbb{Z}}}\) .  相似文献   

8.
9.
The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.  相似文献   

10.
11.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

12.
In the paper [Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback, JDDE 23 (2011), no. 4, 727–790], we have constructed large-amplitude periodic orbits for an equation with delayed monotone positive feedback. We have shown that the unstable sets of the large-amplitude periodic orbits constitute the global attractor besides spindle-like structures. In this paper we focus on a large-amplitude periodic orbit \({\mathcal {O}}_{p}\) with two Floquet multipliers outside the unit circle, and we intend to characterize the geometric structure of its unstable set \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \). We prove that \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) is a three-dimensional \(C^{1}\)-submanifold of the phase space and admits a smooth global graph representation. Within \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \), there exist heteroclinic connections from \({\mathcal {O}}_{p}\) to three different periodic orbits. These connecting sets are two-dimensional \(C^{1}\)-submanifolds of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) and homeomorphic to the two-dimensional open annulus. They form \(C^{1}\)-smooth separatrices in the sense that they divide the points of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) into three subsets according to their \(\omega \)-limit sets.  相似文献   

13.
We focus on a special type of domain wall appearing in the Landau–Lifshitz theory for soft ferromagnetic films. These domain walls are divergence-free \({\mathbb{S}^2}\)-valued transition layers that connect two directions \({m_\theta^\pm \in \mathbb{S}^2}\) (differing by an angle \({2\theta}\)) and minimize the Dirichlet energy. Our main result is the rigorous derivation of the asymptotic structure and energy of such “asymmetric” domain walls in the limit \({\theta \downarrow 0}\). As an application, we deduce that a supercritical bifurcation causes the transition from symmetric to asymmetric walls in the full micromagnetic model.  相似文献   

14.
We consider the temporal homogenization of linear ODEs of the form \({\dot{x}=Ax+\epsilon P(t)x+f(t)}\), where P(t) is periodic and \({\epsilon}\) is small. Using a 2-scale expansion approach, we obtain the long-time approximation \({x(t)\approx {\rm exp}(At) \left( \Omega(t)+\int_0^t {\rm exp}(-A \tau) f(\tau) {\rm d}\tau \right)}\), where \({\Omega}\) solves the cell problem \({\dot{\Omega}=\epsilon B \Omega + \epsilon F(t)}\) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a \({{\mathcal{O}}(\epsilon^{-1})}\) time-scale), and show how B can be computed (at a cost independent of \({\epsilon}\)). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold \({\kappa}\) proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than \({n\kappa}\). Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (\({n\approx 1000}\) for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.  相似文献   

15.
In this paper, we consider the perturbed KdV equation with Fourier multiplier
$$\begin{aligned} u_{t} =- u_{xxx} + \big (M_{\xi }u+u^3 \big )_{x},\quad u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$
with analytic data of size \(\varepsilon \). We prove that the equation admits a Whitney smooth family of small amplitude, real analytic quasi-periodic solutions with \(\tilde{J}\) Diophantine frequencies, where the order of \(\tilde{J}\) is \(O(\frac{1}{\varepsilon })\). The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property, our normal form part is independent of angle variables in spite of the unbounded perturbation.
  相似文献   

16.
17.
Regarding P.-L. Lions’ open question in Oxford Lecture Series in Mathematics and its Applications, Vol. 3 (1996) concerning the propagation of regularity for the density patch, we establish the global existence of solutions to the two-dimensional inhomogeneous incompressible Navier–Stokes system with initial density given by \({(1 - \eta){\bf 1}_{{\Omega}_{0}} + {\bf 1}_{{\Omega}_{0}^{c}}}\) for some small enough constant \({\eta}\) and some \({W^{k+2,p}}\) domain \({\Omega_{0}}\), with initial vorticity belonging to \({L^{1} \cap L^{p}}\) and with appropriate tangential regularities. Furthermore, we prove that the regularity of the domain \({\Omega_0}\) is preserved by time evolution.  相似文献   

18.
Given bounded vector field \({b : {\mathbb{R}^{d}} \to {\mathbb{R}^{d}}}\), scalar field \({u : {\mathbb{R}^{d}} \to {\mathbb{R}}}\), and a smooth function \({\beta : {\mathbb{R}} \to {\mathbb{R}}}\), we study the characterization of the distribution \({{\rm div}(\beta(u)b)}\) in terms of div b and div(ub). In the case of BV vector fields b (and under some further assumptions), such characterization was obtained by L. Ambrosio, C. De Lellis and J. Malý, up to an error term which is a measure concentrated on the so-called tangential set of b. We answer some questions posed in their paper concerning the properties of this term. In particular, we construct a nearly incompressible BV vector field b and a bounded function u for which this term is nonzero. For steady nearly incompressible vector fields b (and under some further assumptions), in the case when d = 2, we provide complete characterization of div(\({\beta(u)b}\)) in terms of div b and div(ub). Our approach relies on the structure of level sets of Lipschitz functions on \({{\mathbb{R}^{2}}}\) obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique, we obtain new sufficient conditions when any bounded weak solution u of \({\partial_t u + b \cdot \nabla u=0}\) is renormalized, that is when it also solves \({\partial_t \beta(u) + b \cdot \nabla \beta(u)=0}\) for any smooth function \({\beta \colon{\mathbb{R}} \to {\mathbb{R}}}\). As a consequence, we obtain new a uniqueness result for this equation.  相似文献   

19.
We derive the vortex dynamics for the nonlinear Maxwell–Klein–Gordon equation with the Ginzburg–Landau type potential. In particular, we consider the case when the external electric fields are of order \({O( | \log \epsilon |^{\frac{1}{2}})}\). We study the convergence of the space–time Jacobian \({\partial_t \psi \cdot i \nabla \psi}\) as an interaction term between the vortices and electric fields. An explicit form of the limiting vector measure is shown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号