首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We consider unsteady supersonic gas flow about bodies for small Strouhal numbers. The amplitude of the angles of attack is assumed arbitrary under the condition that the bow shock remains attached, and the flow behind the shock is supersonic. A criterion is formulated which permits the comparison of the damping characteristic for small and large amplitudes of the disturbed motion. A comparison is made, using the wedge as an example, of the damping characteristics calculated by various theories, and the hypersonic similarity law is verified. Simple asymptotic equations are presented for the rotary derivatives of the thin wedge in a hypersonic gas stream.  相似文献   

2.
In the first part of this paper we study the effect of damping on the multiple steady state deformations of an infinite beam resting on a tensionless foundation and under a point load moving with a sub-critical speed. Due to the non-linear characteristics of the problem, a guess on the deformed shape has to be made before a numerical search can be initiated. It is found that when the damping is present, all the steady state solutions are asymmetric. As the damping approaches zero, some of the steady state solutions become symmetric, while some others remain asymmetric. In the second part of the paper we propose to test the stability of these steady state deformations by a transient analysis on a long finite beam. Our numerical experiment indicates that among all these multiple steady state solutions only one of them is stable. This stable steady state deformation reduces to a symmetric solution when the damping approaches zero. Furthermore, it is found that this stable solution is also the one among all steady state solutions closest in shape to the linear solution based on a bilateral foundation model.  相似文献   

3.
We consider the Cauchy problem for a semilinear heat equation with a supercritical power nonlinearity. It is known that the asymptotic behavior of solutions in time is determined by the decay rate of their initial values in space. In particular, if an initial value decays like a radial steady state, then the corresponding solution converges to that steady state. In this paper we consider solutions whose initial values decay in an anisotropic way. We show that each such solution converges to a steady state which is explicitly determined by an average formula. For a proof, we first consider the linearized equation around a singular steady state, and find a self-similar solution with a specific asymptotic behavior. Then we construct suitable comparison functions by using the self-similar solution, and apply our previous results on global stability and quasi-convergence of solutions.  相似文献   

4.
The effect of plastic strain localization near the domains of sharp variation in shape and transverse cross-section of bodies is well known. But such processes have not yet been studied analytically well enough. On the basis of the model of an ideally rigid-plastic body, we propose an approach for determining the strain fields near the concentrators on the basis the motion of the displacement velocity field (near surfaces or discontinuity lines in the form of rigid-plastic boundaries and centers of the fan of slip lines under plane strain). We consider the problem on plastic flow with failure for a V-notched bar. We show that the plastic flow is not unique (in the framework of the solution completeness).We propose to use the strain criterion for choosing the preferable plastic flow. On the basis of the solutions thus obtained, we state an approach to studying failure processes for more complicated models of bodies.  相似文献   

5.
We consider the optimal design problem for cantilever beams of variable rigidity loaded at the free end by an arbitrary transverse force. The value of the cantilever free end vertical displacement serves as the optimality criterion, and the distribution of the cantilever thicknesses (cross-sections) is usually used as the design variable. We present results of an asymptotic analysis and a numerical solution of the optimization problem and discuss specific features of the formation of optimal solutions under nonlinear bending.  相似文献   

6.
We establish a criterion for the existence of solutions of linear inhomogeneous boundary-value problems in a Banach space. We obtain conditions for the normal solvability of such problems and consider their special cases, namely, countable-dimensional boundary-value problems. Translated from Neliniini Kolyvannya, Vol. 12, No. 1, pp. 3–15, January–March, 2009.  相似文献   

7.
We consider second-order evolution equations in an abstract setting with intermittently delayed/not-delayed damping. We give sufficient conditions for asymptotic and exponential stability, improving and generalizing our previous results from Nicaise and Pignotti (Adv Differ Equ 17:879–902, 2012). In particular, under suitable conditions, we can consider unbounded damping operators. Some concrete examples are finally presented.  相似文献   

8.
A simple nonlinear buckling analysis is applied to a one-degree-of-freedom arch under impact loading in which viscous damping may also be included. Such a loading consists of a falling body striking centrally the joint mass of the arch in such a way that a completely plastic impact can be postulated. When there is no damping the exact dynamic buckling load for such a kind of loading-associated with an unbounded motion can be established by using a static criterion (approach). More specifically, it was shown that the dynamic buckling load corresponds to that unstable equilibrium state where the total potential energy of the system is zero. Furthermore, it was proved that the second variation of the total potential energy at the foregoing unstable equilibrium state is negative definite. This implies that the curve loading versus displacement resulting by the vanishing of the total potential energy has always a maximum on the afore mentioned unstable state. It was also found that the system may become sensitive to initial conditions. If damping is included the foregoing static criterion yields lower bound buckling estimates. These findings were verified by employing a highly efficient approximate technique as well as the numerical scheme of Runge-Kutta for solving any nonlinear initial-value problem.  相似文献   

9.
We consider discontinuous solutions of a boundary value problem for a system of plastic equilibrium equations under plane strain and use these solutions to study the stress state and strength of an inhomogeneous strip with a defect in the form of a transverse cut in a stronger part of the junction.  相似文献   

10.
In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at a finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of the velocity gradient and the square of the maximum norm of the gradient of a liquid crystal director field.  相似文献   

11.
For a linear inhomogeneous differential equation in a Banach space, we find a criterion for the existence of solutions that are bounded on the entire real axis under the assumption that the homogeneous equation admits an exponential dichotomy on the semiaxes. This result is a generalization of the Palmer lemma to the case of infinite-dimensional spaces. We consider examples of countable systems of ordinary differential equations that have bounded solutions. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 1, pp. 3–14, January–March, 2006.  相似文献   

12.
We consider problems on transient wave processes in linearly viscoelastic piecewise homogeneous bodies in the case of small strains, a bounded perturbation propagation domain, and bounded creep of the materials forming the homogeneous components of the bodies. We study problems related to the construction of solutions of such problems by the method of Laplace integral transform with respect to time and the subsequent inversion. We state assertions about the properties of Laplace transforms of the solutions, which simplify the process of determining the original functions. We also consider relations of correspondence between relaxation kernels that belong to different function classes but still affect transient wave processes in a similar way.  相似文献   

13.
We consider scalar reaction-diffusion equations with non-dissipative nonlinearities generating global semiflows which exhibit blow-up in infinite time. This type of equations was only recently approached and the corresponding dynamical systems are known as slowly non-dissipative systems. The existence of unbounded solutions, referred to as grow-up solutions, requires the introduction of some objects interpreted as equilibria at infinity. By extending known results, we are able to obtain a complete decomposition of the associated non-compact global attractor. The connecting orbit structure is determined based on the Sturm permutation method, which yields a simple criterion for the existence of heteroclinic connections.  相似文献   

14.
The nonlinear synchronous full annular rub motion of a flexible rotor induced by the mass unbalance and the contact-rub force with rigid and flexible stator is studied analytically. The nonlinear property is due to the dry friction force between stator and rotor. The exact solutions of the synchronous full annular rub motion and its run speed regions are obtained. The stability of the synchronous full annular rub motion is discussed analytically. The stability criterion and the stability regions of the synchronous full annular rub motion are obtained. A simplified approximate criterion formula for dynamic stability is also derived under the conditions of large impact stiffness, small damping and small friction. The simplified criterion formula can be used conveniently in engineering and matches the real situations of industry.  相似文献   

15.
In this paper we investigate the bifurcations and the chaos of a piecewise linear discontinuous (PWLD) system based upon a rig-coupled SD oscillator, which can be smooth or discontinuous (SD) depending on the value of a system parameter, proposed in [18], showing the equilibrium bifurcations and the transitions between single, double and triple well dynamics for smooth regions. All solutions of the perturbed PWLD system, including equilibria, periodic orbits and homoclinic-like and heteroclinic-like orbits, are obtained and also the chaotic solutions are given analytically for this system. This allows us to employ the Melnikov method to detect the chaotic criterion analytically from the breaking of the homoclinic-like and heteroclinic-like orbits in the presence of viscous damping and an external harmonic driving force. The results presented here in this paper show the complicated dynamics for PWLD system of the subharmonic solutions, chaotic solutions and the coexistence of multiple solutions for the single well system, double well system and the triple well dynamics.  相似文献   

16.
Melnikov analysis for a ship with a general roll-damping model   总被引:6,自引:0,他引:6  
In the framework of a general roll-damping model, we study the influence of different damping models on the nonlinear roll dynamics of ships through a detailed Melnikov analysis. We introduce the concept of the Melnikov equivalent damping and use phase-plane concepts to obtain simple expressions for what we call the Melnikov damping coefficients. We also study the sensitivity of these coefficients to parameter variations. As an application, we consider the equivalence of the linear-plus-cubic and linear-plus-quadratic damping models, and we derive a condition under which the two models yields the same Melnikov predictions. The free- and forced-oscillation behaviors of the models satisfying this condition are also compared.  相似文献   

17.
Launch vehicle structural responses can couple with transonic flow state transitions at the nose of payload fairings. This self-sustained coupling yields a nonlinear equation of motion that can be analyzed using the force–response relationship and the periodicity condition. The traditional analysis approach for this phenomenon, however, linearizes the equation of motion by converting the alternating flow forces into an aerodynamic damping term and defines a stability criterion as the response amplitude that yields zero net system damping. This work clarifies the relationship between the present and traditional methods, and compares results and conclusions. The feasibility of modifying a launch vehicle response analysis of buffeting (random pressure fluctuations caused by turbulent flow) to include aeroelastic coupling effects is also explored. The aerodynamic stiffness and damping terms formulated herein are consistent with trends observed in wind-tunnel test data. It is shown, however, that the modified buffet analysis can be inaccurate, particularly when the aeroelastic coupling contribution does not dominate the system response.  相似文献   

18.
Yan Li 《Nonlinear dynamics》2016,85(4):2425-2436
This paper is devoted to consider a time-delayed diffusive prey–predator model with hyperbolic mortality. We focus on the impact of time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively, and we investigate the similarities and differences between them. Our conclusions show that when time delay continues to increase and crosses through some critical values, a family of homogenous and inhomogeneous periodic solutions emerge. Particularly, we find the minimum value of time delay, which is often hard to be found. We also consider the nonexistence and existence of steady state solutions to the reaction–diffusion model without time delay.  相似文献   

19.
This work studies the response of a weakly non-linear vibratory system with two degrees-of-freedom when the system is excited near resonance. The two linear modes are in 1:3 internal resonance. The asymptotic method of averaging and direct numerical integration are used to obtain the response of the system. Over a range of excitation frequencies and modal damping, the averaged equations in slow time are found to possess limit cycle solutions. These solutions undergo period doubling bifurcations to chaotic solutions. The averaging theory then implies the existence of amplitude modulated motions, the exact nature of modulations not being well defined. Numerical simulation of the original vibratory two degree-of-freedom system shows that the system does undergo amplitude modulated motions. For sufficiently large damping, only periodic modulations arise in the form of a 2-torus. For lower damping, the 2-torus can undergo doubling and ultimate destruction to result in a chaotic attractor. Poincare sections of steady state solutions are used to characterize the various types of amplitude modulated motions.  相似文献   

20.
We consider an incompressible fluid in a three-dimensional pipe, following the Navier–Stokes system with classical boundary conditions. We are interested in the following question: is there any optimal shape for the criterion “energy dissipated by the fluid”? Moreover, is the cylinder the optimal shape? We prove that there exists an optimal shape in a reasonable class of admissible domains, but the cylinder is not optimal. For that purpose, we define the first order optimality condition, thanks to the adjoint state and we prove that it is impossible that the adjoint state be a solution of this over-determined system when the domain is the cylinder. At last, we show some numerical simulations for that problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号