首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
We prove the convergence of some multiplicative and additive Schwarz methods for inequalities which contain contraction operators. The problem is stated in a reflexive Banach space and it generalizes the well-known fixed-point problem in the Hilbert spaces. Error estimation theorems are given for three multiplicative algorithms and two additive algorithms. We show that these algorithms are in fact Schwarz methods if the subspaces are associated with a decomposition of the domain. Also, for the one- and two-level methods in the finite element spaces, we write the convergence rates as functions of the overlapping and mesh parameters. They are similar with the convergence rates of these methods for linear problems. Besides the direct use of the five algorithms for the inequalities with contraction operators, we can use the above results to obtain the convergence rate of the Schwarz method for other types of inequalities or nonlinear equations. In this way, we prove the convergence and estimate the error of the one- and two-level Schwarz methods for some inequalities in Hilbert spaces which are not of the variational type, and also, for the Navier–Stokes problem. Finally, we give conditions of existence and uniqueness of the solution for all problems we consider. We point out that these conditions and the convergence conditions of the proposed algorithms are of the same type.  相似文献   

2.
Summary. We study some additive Schwarz algorithms for the version Galerkin boundary element method applied to some weakly singular and hypersingular integral equations of the first kind. Both non-overlapping and overlapping methods are considered. We prove that the condition numbers of the additive Schwarz operators grow at most as independently of h, where p is the degree of the polynomials used in the Galerkin boundary element schemes and h is the mesh size. Thus we show that additive Schwarz methods, which were originally designed for finite element discretisation of differential equations, are also efficient preconditioners for some boundary integral operators, which are non-local operators. Received June 15, 1997 / Revised version received July 7, 1998 / Published online February 17, 2000  相似文献   

3.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. Optimized Schwarz methods employ a first or higher order boundary condition along the artificial interface to accelerate convergence. In the literature, the analysis of optimized Schwarz methods relies on Fourier analysis and so the domains are restricted to be regular (rectangular). In this paper, we express the interface operator of an optimized Schwarz method in terms of Poincare-Steklov operators. This enables us to derive an upper bound of the spectral radius of the operator arising in this method of 1−O(h1/4) on a class of general domains, where h is the discretization parameter. This is the predicted rate for a second order optimized Schwarz method in the literature on rectangular subdomains and is also the observed rate in numerical simulations.  相似文献   

4.
Summary The Schwarz Alternating Method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each subdomain. In this paper, proofs of convergence of some Schwarz Alternating Methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method of subsolutions and supersolutions) are given. In particular, an additive Schwarz method for scalar as well some coupled nonlinear PDEs are shown to converge to some solution on finitely many subdomains, even when multiple solutions are possible. In the coupled system case, each subdomain PDE is linear, decoupled and can be solved concurrently with other subdomain PDEs. These results are applicable to several models in population biology. This work was in part supported by a grant from the RGC of HKSAR, China (HKUST6171/99P)  相似文献   

5.
Overlapping Schwarz preconditioners are constructed and numerically studied for Gauss-Lobatto-Legendre (GLL) spectral element discretizations of heterogeneous elliptic problems on nonstandard domains defined by Gordon-Hall transfinite mappings. The results of several test problems in the plane show that the proposed preconditioners retain the good convergence properties of overlapping Schwarz preconditioners for standard affine GLL spectral elements, i.e. their convergence rate is independent of the number of subdomains, of the spectral degree in the case of generous overlap and of the discontinuity jumps in the coefficients of the elliptic operator, while in the case of small overlap, the convergence rate depends on the inverse of the overlap size.  相似文献   

6.
Summary In this paper we discuss bounds for the convergence rates of several domain decomposition algorithms to solve symmetric, indefinite linear systems arising from mixed finite element discretizations of elliptic problems. The algorithms include Schwarz methods and iterative refinement methods on locally refined grids. The implementation of Schwarz and iterative refinement algorithms have been discussed in part I. A discussion on the stability of mixed discretizations on locally refined grids is included and quantiative estimates for the convergence rates of some iterative refinement algorithms are also derived.Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036. This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003, while the author was a graduate student at New York University, and in part by NSF Grant ASC 9003002, while the author was a Visiting, Assistant Researcher at UCLA.  相似文献   

7.
Weighted max norms, splittings, and overlapping additive Schwarz iterations   总被引:3,自引:0,他引:3  
Summary. Weighted max-norm bounds are obtained for Algebraic Additive Schwarz Iterations with overlapping blocks for the solution of Ax = b, when the coefficient matrix A is an M-matrix. The case of inexact local solvers is also covered. These bounds are analogous to those that exist using A-norms when the matrix A is symmetric positive definite. A new theorem concerning P-regular splittings is presented which provides a useful tool for the A-norm bounds. Furthermore, a theory of splittings is developed to represent Algebraic Additive Schwarz Iterations. This representation makes a connection with multisplitting methods. With this representation, and using a comparison theorem, it is shown that a coarse grid correction improves the convergence of Additive Schwarz Iterations when measured in weighted max norm. Received March 13, 1998 / Revised version received January 26, 1999  相似文献   

8.
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L p norm and W1,p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.  相似文献   

9.
Summary This paper introduces and analyzes two ways of extracting the hydrostatic pressure when solving Stokes problem using thep version of the finite element method. When one uses a localH 1 projection, we show that optimal rates of convergence for the pressure approximation is achieved. When the pressure is not inH 1. or the value of the pressure is only needed at a few points, one may extract the pressure pointwise using e.g. a single layer potential recovery. Negative, zero, and higher norm estimates for the Stokes velocity are derived within the framework of thep version of the F.E.M.Partially supported by ONR grants N00014-87-K-0427 and N00014-90-J-1238  相似文献   

10.
We consider Quadratic Spline Collocation (QSC) methods for linear second order elliptic Partial Differential Equations (PDEs). The standard formulation of these methods leads to non-optimal approximations. In order to derive optimal QSC approximations, high order perturbations of the PDE problem are generated. These perturbations can be applied either to the PDE problem operators or to the right sides, thus leading to two different formulations of optimal QSC methods. The convergence properties of the QSC methods are studied. OptimalO(h 3–j ) global error estimates for thejth partial derivative are obtained for a certain class of problems. Moreover,O(h 4–j ) error bounds for thejth partial derivative are obtained at certain sets of points. Results from numerical experiments verify the theoretical behaviour of the QSC methods. Performance results also show that the QSC methods are very effective from the computational point of view. They have been implemented efficiently on parallel machines.This research was supported in part by David Ross Foundation (U.S.A) and NSERC (Natural Sciences and Engineering Research Council of Canada).  相似文献   

11.
Summary In this paper, we study some additive Schwarz methods (ASM) for thep-version finite element method. We consider linear, scalar, self adjoint, second order elliptic problems and quadrilateral elements in the finite element discretization. We prove a constant bound independent of the degreep and the number of subdomainsN, for the condition number of the ASM iteration operator. This optimal result is obtained first in dimension two. It is then generalized to dimensionn and to a variant of the method on the interface. Numerical experiments confirming these results are reported. As is the case for other additive Schwarz methods, our algorithms are highly parallel and scalable.This work was supported in part by the Applied Math. Sci. Program of the U.S. Department of Energy under contract DE-FG02-88ER25053 and, in part, by the National Science Foundation under Grant NSF-CCR-9204255  相似文献   

12.
We study two-level additive Schwarz preconditioners that can be used in the iterative solution of the discrete problems resulting from C0 interior penalty methods for fourth order elliptic boundary value problems. We show that the condition number of the preconditioned system is bounded by C(1+(H3/δ3)), where H is the typical diameter of a subdomain, δ measures the overlap among the subdomains and the positive constant C is independent of the mesh sizes and the number of subdomains. This work was supported in part by the National Science Foundation under Grant No. DMS-03-11790.  相似文献   

13.
The Schwarz method can be used for the iterative solution of elliptic boundary value problems on a large domain Ω. One subdivides Ω into smaller, more manageable, subdomains and solves the differential equation in these subdomains using appropriate boundary conditions. Optimized Schwarz Methods use Robin conditions on the artificial interfaces for information exchange at each iteration, and for which one can optimize the Robin parameters. While the convergence theory of classical Schwarz methods (with Dirichlet conditions on the artificial interface) is well understood, the overlapping Optimized Schwarz Methods still lack a complete theory. In this paper, an abstract Hilbert space version of the Optimized Schwarz Method (OSM) is presented, together with an analysis of conditions for its geometric convergence. It is also shown that if the overlap is relatively uniform, these convergence conditions are met for Optimized Schwarz Methods for two-dimensional elliptic problems, for any positive Robin parameter. In the discrete setting, we obtain that the convergence factor ρ(h) varies like a polylogarithm of h. Numerical experiments show that the methods work well and that the convergence factor does not appear to depend on h.  相似文献   

14.
A domain decomposition method (DDM) is presented to solve the distributed optimal control problem. The optimal control problem essentially couples an elliptic partial differential equation with respect to the state variable and a variational inequality with respect to the constrained control variable. The proposed algorithm, called SA-GP algorithm, consists of two iterative stages. In the inner loops, the Schwarz alternating method (SA) is applied to solve the state and co-state variables, and in the outer loops the gradient projection algorithm (GP) is adopted to obtain the control variable. Convergence of iterations depends on both the outer and the inner loops, which are coupled and affected by each other. In the classical iteration algorithms, a given tolerance would be reached after sufficiently many iteration steps, but more iterations lead to huge computational cost. For solving constrained optimal control problems, most of the computational cost is used to solve PDEs. In this paper, a proposed iterative number independent of the tolerance is used in the inner loops so as to save a lot of computational cost. The convergence rate of L2-error of control variable is derived. Also the analysis on how to choose the proposed iteration number in the inner loops is given. Some numerical experiments are performed to verify the theoretical results.  相似文献   

15.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

16.
The optimal design problem for maximal torsion stiffness of an infinite bar of given geometry and unknown distribution of two materials of prescribed amounts is one model example in topology optimisation. It eventually leads to a degenerate convex minimisation problem. The numerical analysis is therefore delicate for possibly multiple primal variables u but unique derivatives σ : = DW(D u). Even fine a posteriori error estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine everywhere. Its convergence proof is therefore based on energy estimates and some refined convexity control. Numerical experiments illustrate even nearly optimal convergence rates of the proposed AFEM. Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.  相似文献   

17.
In this article we analyzed the convergence of the Schwarz waveform relaxation method for solving the forward–backward heat equation. Numerical results are presented for a specific type of model problem.  相似文献   

18.
Summary We examine the convergence properties of the finite element method with nodes moving along the characteristics for one-dimensional convection-diffusion equations. For linear elements, we demonstrate optimal rates of convergence in theL 2,H 1 andL norms. Both linear and nonlinear problems are considered.This work forms part of the research programme of the Oxford/Reading Institute for Computational Dynamics.  相似文献   

19.
We develop a local flux mimetic finite difference method for second order elliptic equations with full tensor coefficients on polyhedral meshes. To approximate the velocity (vector variable), the method uses two degrees of freedom per element edge in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions. To approximate the pressure (scalar variable), the method uses one degree of freedom per element. A specially chosen quadrature rule for the L 2-product of vector-functions allows for a local flux elimination and reduction of the method to a cell-centered finite difference scheme for the pressure unknowns. Under certain assumptions, first-order convergence is proved for both variables and second-order convergence is proved for the pressure. The assumptions are verified on simplicial meshes for a particular quadrature rule that leads to a symmetric method. For general polyhedral meshes, non-symmetric methods are constructed based on quadrature rules that are shown to satisfy some of the assumptions. Numerical results confirm the theory.  相似文献   

20.
Summary For Galerkin's method with finite elements as trial functions for strongly elliptic operator equations in the Hilbert scaleH t the super-approximation property and the optimal convergence rate are obtained by using the Aubin-Nitsche lemma. This applies in particular to spline collocation methods for a wide class of pseudodifferential equations.Dedicated to the memory of Professor Lothar Collatz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号