首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NOx formation was measured during combustion of pulverized coals and pulverized coal char in N2 and CO2 environments under isothermal and nearly constant oxygen conditions (i.e. using dilute coal loading). Three different oxygen concentrations (12% O2, 24% O2, and 36% O2) and two representative US coals were investigated, at a gas temperature of 1050 °C. To investigate the importance of NO reburn reactions, experiments were also performed with an elevated concentration (550 ppm) of NO in the gases into which the coal was introduced. For low levels of background NO, the fractional fuel-nitrogen conversion to NOx increases dramatically with increasing bath gas oxygen content, for both N2 and CO2 environments, though the fuel conversion is generally lower in CO2 environments. Char N conversion is lower than volatile N conversion, especially for elevated O2 concentrations. These results highlight the importance of the volatile flame and char combustion temperatures on NOx formation. For the high background NOx condition, net NOx production is only observed in the 36% O2 environment. Under these dilute loading conditions, NO reburn is found to be between 20% and 40%, depending on the type of coal, the use of N2 or CO2 diluent, the bulk O2 concentration, and whether or not one considers reburn of volatile-NOx. This dataset provides a unique opportunity to understand and differentiate the different sources and sinks of NOx under oxy-fuel combustion conditions.  相似文献   

2.
The effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions was studied by single particle experiments and modelling. Experiments of pine and beech wood char conversion were carried out in a single particle combustor under conditions of 1473-1723 K, 0.0-10.5% O2, and 25-42% H2O. A comprehensive progressive char conversion model, including heterogeneous reactions (char oxidation and char gasification with CO2 and H2O), homogeneous reactions (CO oxidation, water-gas shift reaction, and H2 oxidation) in the particle boundary layer, particle shrinkage, and external and internal heat and mass transfer, was developed. The modelling results are in good agreement with both experimental char conversion time and particle size evolution in the presence of oxygen, while larger deviations are found for the gasification experiments. The modelling results show that the char oxidation is limited by mass transfer, while the char gasification is controlled by both mass transfer and gasification kinetics at the investigated conditions. A sensitivity analysis shows that the CO oxidation in the boundary layer and the gasification kinetics influence significantly the char conversion time, while the water-gas shift reaction and H2 oxidation have only a small effect. Analysis of the sensitive parameters on the char conversion process under a typical pulverized biomass combustion condition (4% O2, 13% CO2, 13% H2O), shows that the char gasification reactions contribute significantly to char conversion, especially for millimeter-sized biomass char particles at high temperatures.  相似文献   

3.
The chemistry of char-N release and conversion to nitrogen-containing products has been probed by studying its release and reactions with O2, CO2, and H2O. The experiments were performed in a fixed bed flow reactor at pressures of up to 1.0 MPa. The results show that the major nitrogen-containing products observed depend on the reactant gas; with O2, NO, and N2 being the major species observed. Char-N reaction with CO2 produces N2 with very high selectivity over a broad range of pressures and CO2 concentrations, and reaction with H2O gives rise to HCN, NH3, and N2. Observed distributions of nitrogen-containing products are little affected by pressure when O2 and CO2 are the reactant gases, but increasing pressures in the reaction with H2O results in the formation of increasing proportions of NH3. Formation of NH3 is also promoted by increasing concentrations of H2O in the feed gas. The results suggest that NO and HCN are primary products when O2 and H2O, respectively, are used as the reactant gases, and that the other observed products arise from interactions of these primary products with the char surface.  相似文献   

4.
This work aims to provide insight into the interaction of propene with NOx from both experimental and kinetic modeling perspectives. The oxidation of propene at fuel-lean (?=0.23) condition and the oxidation of propene doped with NOx at fuel-lean (?=0.23) and fuel-rich (?=1.35) conditions have been investigated in a laminar flow reactor at atmospheric pressure in the temperature range of 725-1250 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to achieve comprehensive, isomer-resolved identification of major products and critical nitrogenous, carbonyl and hydrocarbon intermediates. To complement the experiments, a detailed kinetic model, starting from widely used core mechanisms, was developed. Rate of production analyses and sensitivity analyses were performed to interpret the experimental observations. The results show that the promoting effects of NOx on the oxidation reactivity of propene are initiated by the reactions of allyl radical with NO2 at low temperature, i.e. C3H5A+NO2C3H5O+NO. For the oxidation of the fuel-rich propene/NOx mixture, temperature-dependent mole fraction profiles of propene, O2 and products show several distinct regions reflecting a competition between chain propagation via C3H5A+NO2C3H5O+NO and chain termination via C3H5A+NOC3H5NO. The formation and consumption chemistry of carbonyl and hydrocarbon intermediates in the presence of NOx was also analyzed and discussed.  相似文献   

5.
For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO2 levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO2 gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO2 reaction rates for a high-volatile bituminous coal char particle (130 μm diameter) reacting in several O2 concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO2, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O2 concentration at the particle surface. The CO2 gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO2 gasification reaction increases the char conversion rate for combustion at low O2 concentrations, but decreases char conversion for combustion at high O2 concentrations. These calculations give new insight into the complexity of the effects from the CO2 gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.  相似文献   

6.
Catalytic ozonation is a promising method for simultaneous removal of NOx and Cl-VOCs, but needs to clarify their interaction mechanism and the influence of catalyst acidity. In this paper, the simultaneous catalytic ozonation of NO and dichloromethane (DCM) on Mn/H-ZSM-5 molecular sieve catalysts were investigated experimentally. Results show that the overall acidity, acid sites type and intensity have a significant impact on the degradation efficiency, the conversion path of Cl element, and the interaction of NO/DCM adsorption-degradation. Nevertheless, regardless of catalysts, NO could be preferentially oxidized by ozone to generate NO2 in co-ozonation process, which inhibited and even shielded DCM ozonation at O3/DCM ratio <1.7. In addition, the highly active oxidizing species such as NO3/N2O5, produced by the deep ozonation of NO2, exhibited a synergistic effect on the conversion of DCM and intermediates, which in turn weakened NO2 deep oxidation. Specifically, NO addition caused a general decrease in the HCl selectivity, and a slight increase in the CHCl3 selectivity of all samples, while the Cl2 selectivity was determined by the overall catalyst acidity. The samples with higher overall acidity exhibited lower activity for DCM degradation. In particular, for samples with the weak overall acidity but strong acid sites, the sum selectivity of HCl, Cl2, and CHCl3 was significantly improved under the interplay effect of NO, indicating that strong acidic sites were beneficial to the complete degradation of DCM. In-situ DRIFTS revealed that aldehydes and carboxylates were the key intermediates of DCM ozonation. In the co-ozonation, NO and its oxidation products (such as nitrates) could promote the formation and conversion of these intermediates, and further converted into CO and CO2 by the active oxidant from ozone. Finally, the interference of H2O and SO2 on the NO/DCM co-ozonation were revealed.  相似文献   

7.
Fuel-rich combustion of methane in a homogeneous-charge compression-ignition (HCCI) engine can be used as a polygeneration process producing work, heat, and useful chemicals like syngas. Due to the inertness of methane, additives such as dimethyl ether (DME) are needed to achieve ignition at moderate inlet temperatures and to control combustion phasing. Because significant concentrations of DME are then needed, a considerable part of the fuel energy comes from DME. An alternative ignition promotor known from fuel-lean HCCI is ozone (O3). Here, a combined experimental and modelling study on the ignition of fuel-rich partial oxidation of methane/air mixtures at Φ = 1.9 with ozone and DME as additives in an HCCI engine is conducted. Experimental results show that ozone is a suitable additive for fuel-rich HCCI, with only 75 ppm ozone reducing the fuel-fraction of DME needed from 11.0% to 5.3%. Since ozone does not survive until the end of the compression stroke, the reaction paths are analyzed in a single-zone model. The simulation shows that different ignition precursors or buffer molecules are formed, depending on the additives. If only DME is added, hydrogen peroxide (H2O2) and formaldehyde (CH2O) are the most important intermediates, leading to OH formation and ignition around top dead center (TDC). With ozone addition, methyl hydroperoxide (CH3OOH) becomes very important earlier in the compression stroke under these fuel-rich conditions. It is then later converted to CH2O and H2O2. Thus, ozone is a very effective additive not only for fuel-lean, but also for fuel-rich combustion. However, the mechanism differs between both regimes. Because less of the expensive additives are needed, ozone could help improving the economics of a polygeneration process with fuel-rich operated HCCI engines.  相似文献   

8.
This paper concerns the influence of a direct current (dc) corona discharge on production and reduction of NO, NO2 and N2O in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures. The corona discharge was generated in a needle-to-plate reactor. The positively polarized electrode consisted of 7 needles. The grounded electrode was a stainless steel plate. The gas flow rate through the reactor was varied from 28 to 110 cm3/s. The time-averaged discharge current ranged from 0 to 6 mA. It was found that in the N2:O2:CO2 mixture the corona discharge produced NO, NO2 and N2O. In the N2:O2:CO2:NO2 mixture the reduction of NO2 was between 6–56%, depending on the concentration of O2, gas flow rate and corona discharge current. The NO2 reduction was accompanied by production of NO and N2O. The results show that efficient reduction of nitrogen oxides by a corona discharge cannot be expected in the mixtures containing N2 and O2 if reducing additives are not employed.  相似文献   

9.
We report a spatially resolved spectroscopic study of the visible chemiluminescence emission from different premixed ammonia-air-oxygen flames stabilized on a laminar flat flame burner, with equivalence ratio ranging from 0.7 to 1.35 and an O2/N2 ratio of 0.4. In the reaction zone of the observed flames, the visible emission was recognized to be the chemiluminescence of excited NH2* radicals, while in the post-flame zone, two types of chemiluminescence were observed: NO2* chemiluminescence dominated in the fuel-lean flames and NH2* chemiluminescence dominated in the fuel-rich flames. The high-resolution spectra of the NO2* and NH2* chemiluminescence in the visible region (400-700 nm) were recorded. The intensity of both spectra increased gradually with wavelength. However, the NO2*-chemiluminescence spectrum appeared to be continuous and unstructured, while the NH2*-chemiluminescence spectrum consisted of groups of distinct emission lines. Based on the spectral feature, the ratios of the integrated chemiluminescence intensities over the 598-603 nm wavelength range to the intensities over the 586-592 nm range and 447-453 nm range were used to sense equivalence ratio. In addition, slightly different colors of the fuel-lean and fuel-rich flames were observed, due to the fact that NO2* chemiluminescence had a relatively stronger signal in the blue region than NH2* chemiluminescence. The difference was used to infer flame equivalence ratio using the flame images recorded by a RGB digital camera, where the ratio of the signal from the red channel to the signal from the blue channel was calculated.  相似文献   

10.
The addition of halogens, particularly iodine, to the gas during coal char oxidation has been used in previous studies to quench gas-phase chemistry, thereby allowing one to separate the effects of homogeneous and heterogeneous reactions. Halogen addition suppresses the gas-phase radicals to near-equilibrium levels. A similar effect can be expected from other compounds with high efficiency as fire suppressants, such as alkali metals. The effectiveness of the use of additives in distinguishing homogeneous and heterogeneous reactions during char oxidation relies on the assumption that radicals are suppressed while heterogeneous reactions occurring on the char surface are not affected. The present work tests this assumption for potassium bromide (KBr) and sodium carbonate (Na2CO3) reacting with a pulverized eastern bituminous coal char during oxidation. An increase in CO and a slight reduction in particle temperature were observed with the addition of KBr, consistent with known effects of halogens on gas-phase chemistry. An increase in particle size was also observed with the KBr addition. This observation and the results of model calculations suggest that there is significant incorporation of liquid KBr on the char surface under the conditions examined. With Na2CO3 addition, the particle temperature did not change, the particle size showed a slight decrease, and CO production increased. Although the mechanisms for Na interaction with radicals at combustion conditions are not well established, char oxidation modeling suggests that a decrease in OH concentration in the particle boundary layer is the cause for the observed increase in CO production. It is concluded that Na2CO3 has clear advantages over KBr for inhibiting gas-phase chemistry without affecting char oxidation for the conditions investigated here.  相似文献   

11.
The effect of carbon conversion on the attrition of lignite char particles during fluidized bed gasification by CO2 was studied in a lab-scale apparatus. The influence of bed temperature and inlet CO2 concentration on carbon conversion and, consequently, on attrition was studied. The mechanical resistance of the char particles was also characterized at different stages of char conversion by specific attrition experiments. A predictive kinetic model for CO2 gasification of the lignite char was developed from the experimental results, that was able to correctly predict the evolution of carbon conversion versus time. On this basis a semi-empirical model was developed in order to simulate the evolution of carbon elutriation rate with carbon conversion degree, i.e. the gasification-assisted attrition enhancement effect.  相似文献   

12.
O2/CO2 combustion has attracted considerable attention as a promising technology for CO2 capture. Using biomass for fuel is considered carbon neutral, and O2/CO2 biomass combustion can mitigate the deleterious environmental effect of greenhouse. In this study, the effect of CO2, the main component gas in O2/CO2 combustion, on the pyrolysis characteristics of biomass is investigated. Cellulose, lignin, and metal-depleted lignin pyrolysis experiments were performed using a thermobalance. Information on the surface chemistry of the chars was obtained by Fourier transform infrared (FTIR) spectroscopy to investigate changes in the surface chemistry during pyrolysis under different surrounding gasses. When the temperature increased to 1073 K at heating rate of 1 K s?1, the char yield of lignin in the presence of CO2 increased by about 10% compared with that under Ar. However, for cellulose and metal-depleted lignin, no significant difference appeared between pyrolysis under CO2 and that under Ar. FT-IR showed that a strong peak corresponding to carbonate ions appeared in the char derived from lignin under CO2. Therefore, salts such as Na2CO3 or K2CO3 formed during the lignin pyrolysis under CO2. At around 1650–1770 cm?1, a significant difference appeared in the FTIR spectra of chars formed under CO2 and those formed under Ar. C=O groups not associated with an aromatic ring were found only in chars formed under CO2. It was suggested that these salts affected the char formation reaction, in that the char formed during lignin pyrolysis under CO2 had unique chemical bands that did not appear in the lignin-derived char prepared under Ar.  相似文献   

13.
This article investigates the effect of steam on the ignition of single particles of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions. Three solid fuels, all in the size range 125–150 µm, were used in this study; specifically, a low rank sub-bituminous Colombian coal, a low-rank/high-ash sub-bituminous Brazilian coal and a charcoal residue from black acacia. For each solid fuel, particles were burned at a constant drop tube furnace wall temperature of 1475?K, in six different mixtures of O2/N2/CO2/H2O, which allowed simulating dry and wet conventional and oxy-fuel combustion conditions. A high-speed camera was used to record the ignition process and the collected images were treated to characterize the ignition mode (either gas-phase or surface mode) and to calculate the ignition delay times. The Colombian coal particles ignite predominately in the gas-phase for all test conditions, but under simulated oxy-fuel conditions there is a decrease in the occurrence of this ignition mode; the charcoal particles experience surface ignition regardless of the test condition; and the Brazilian coal particles ignite predominately in the gas-phase when combustion occurs in mixtures of O2/N2/H2O, but under simulated oxy-fuel conditions the ignition occurs predominantly on the surface. The ignition delay times for particles that ignited in the gas-phase are smaller than those that ignited on the surface, and generally the simulated oxy-fuel conditions retard the onset of both gas-phase and surface ignition. The addition of steam decreases the gas-phase and surface ignition delay times of the particles of both coals under simulated oxy-fuel conditions, but has a small impact on the gas-phase ignition delay times when the combustion occurs in mixtures of O2/N2/H2O. The steam gasification reaction is likely to be responsible for the steam effect on the ignition delay times through the production of highly flammable species that promote the onset of ignition.  相似文献   

14.
We studied adsorption of several molecules (CO, CO2, H2O, N2O, NO, NO2, and O2) on hexagonal boron nitride (h-BN) monolayers supported on transition metal (TM) surfaces, using density functional calculations. We observed that all the molecules bind very weakly on the pristine h-BN, with binding energies in the range of 0.02–0.03 eV. Interestingly, however, when h-BN is supported on the TM surface, NO2 and O2 become strongly chemisorbed on h-BN, with binding energies of >1 eV, whereas other molecules still physisorbed, with binding energies of ~0.1 eV at most. The electron transfer from TM to pz states of h-BN played a substantial role in such strong bindings of NO2 and O2 on h-BN, as these molecules possess unpaired electrons that can interact with pz states of h-BN. Such selective molecular binding on h-BN/TM originates from the peculiar distribution of the spin-polarized highest occupied and lowest unoccupied molecular orbitals of NO2 and O2. Strong molecular adsorption and high selectivity would make the h-BN/TM system possible for a variety of applications such as catalysts and gas sensors.  相似文献   

15.
During coal combustion, char chemical reaction is the slowest step, particularly in the last burnout stage, where the char consists of small amounts of carbon in a predominant ash framework. Existing kinetics models tend to deviate from experimental measurements of late char burnout due to the incomplete treatment of ash effects. Ash can improve pore evolution through vaporization, hinder oxygen transport by forming an ash film, and reduce active carbon sites and available surface per unit volume by penetrating into the char matrix. In this work, a sophisticated kinetics model, focusing on these three ash evolution mechanisms (ash vaporization, ash film, and ash dilution) during pulverized coal (PC) char combustion, is developed by integrating them into a thorough mechanistic picture. Further, a detailed comparison of the three distinct ash effects on PC char conversion during air (O2/N2) and oxy-fuel (O2/CO2) combustion is performed. For the modeled coal, the mass of ash vaporization is approximate 3 orders less than the mass of ash remaining, which participates in ash dilution and ash film formation, both in O2/N2 and O2/CO2 atmospheres. The influence of these phenomena on burnout time follows the order: ash dilution > ash film > ash vaporization. The influence of ash vaporization on burnout time is minor, but through interactions with the ash dilution and ash film forming processes it can have an impact at high extents of burnout, particularly in O2/CO2 atmospheres. In O2/N2 atmospheres the residual ash predominately exists as an ash film, whereas it mainly exists as diluted ash in the char matrix in O2/CO2 atmospheres. The residual ash particle is encased by a thick film when the ash film forming fraction is high (low ash dilution fraction). These results provide in-depth insights into the conversion of PC char and further utilization of the residual ash.  相似文献   

16.
The aim of this paper is to investigate the influence of NH3 additive (540–1470 ppm) on the conversion of NO2 and the creation of NO and N2O in a mixture of N2:O2:CO2: NO2:NH3 subjected to the so-called direct current (dc) corona discharge. The dc corona discharge was generated in a needle-to-plate reactor. Seven positively polarized needles were used as one electrode and a stainless steel plate as the other. The time-averaged discharge current was varied from 0 to 7 mA. It was found that the dc corona discharge decomposed NO2 and produced NO and N2O. The reduction of NO2 was higher without NH3 additive if the residence time of the operating gas was relatively short. However, in a longer corona discharge processing the NH3 additive may be useful for reduction of NO2.Supports from the Research and Development Commitee (KBN) under Programme KBN 0889/P4/93/04 and the Polish Academy of Sciences within IMP 3.1 project are gratefully acknowledged.  相似文献   

17.
Hydrogen combustion has emerged as one promising option toward the achievement of carbon-neutral in aviation. In this study, the effects of hydrogen addition on laminar flame speeds, autoignition, and the coupling of autoignition and flame propagation for surrogate jet fuel n-dodecane are numerically investigated at representative engine conditions to elucidate the potential challenges for flame stabilization and the autoignition risks in combustor design. Results show that the normalized flame speed increases almost linearly with hydrogen addition for fuel-lean conditions, while for fuel-rich conditions it increases nonlinearly and can be up to 20. This poses great challenges for avoiding flameholding and flashback, particularly for fuel-rich mixtures. Results further show that flame speed enhancement due to the increased flame temperature can be neglected under fuel-lean conditions, but not for fuel-rich mixtures. For the dependence of ignition delay time on temperature, there exists a unique intersection between pure n-dodecane/air and H2/air mixtures. Near the intersection temperature, there exists subtle kinetic coupling of the two fuels, leading to different H2 roles, e.g., accelerator or inhibitor, for the autoignition process of n-dodecane/H2/air mixtures. With this intersection temperature, the diagram for autoignition risks is constructed, which demonstrates that H2 acts as an inhibitor under subsonic cruise conditions while either an inhibitor or an accelerator under supersonic cruise conditions depending on the combustor inlet temperature and the amount of hydrogen addition. With the potential coupling of autoignition and flame propagation, the 1-D autoignition-assisted flame calculations show that hydrogen addition can alleviate or even eliminate the two-stage ignition characteristics for pure n-dodecane/air flames. For n-dodecane blended with hydrogen, the autoignition-assisted flame propagation speed, as well as the global transition from flame propagation to autoignition, can still be described by an analytic scaling parameterized by the ignition Damkӧhler number.  相似文献   

18.
The coadsorption of NO and other small gases (H2 and CO) on a polycrystalline Rh filament has been studied by thermal desorption mass spectroscopy, using 15NO. The sample was exposed to a mixture of nitric oxide and other gases with various concentrations of 15NO at room temperature. It is indicated that NO, CO and H2 coadsorbs on the rhodium surface, and NO desorbs as N2 and O2. NO is adsorbed mainly in the dissociation at lower coverage and molecular adsorption becomes dominant at higher coverage. But the amount of desorbed O2 was very small. The chemisorption of CO is affected by the chemisorbed NO. Thermal desorption of hydrogen is detected when the value of P15NO/PCO is very small. The hydrogen adsorbed on the rhodium surface is replaced by NO with a longer exposure time.  相似文献   

19.
Zirconium doped Cu/ZSM-5 catalysts were prepared and characterized in this investigation. Catalytic activity during soot combustion was determined in both O2/He and NO/O2/He atmospheres by temperature-programmed oxidation. The use of zirconium reduces the temperature of maximum soot oxidation rate by 229 °C in O2/He atmosphere and 270 °C in NO/O2/He atmosphere. The promoting effect of zirconium is discussed in terms of surface dispersion, enrichment of active components, and creation of oxygen vacancies where molecular oxygen or NOx is adsorbed forming basic surface oxygen species active for soot oxidation. The NO2 formed at the copper–zirconium interface sites leads to the ignition temperature being significantly decreased to 93 °C, which is inside the exhaust temperature range of diesel engines. To understand the combustion reaction kinetics, the activation energy and reaction order of soot combustion were evaluated. According to the Redhead method, the activation energy for non-catalyzed reaction is 164 kJ/mol under the O2/He atmosphere. For the Cu/ZSM-5 and Cu–Zr/ZSM-5, the activation energies under the O2/He atmosphere (134–151 kJ/mol) are slightly higher than those under the NO/O2/He atmosphere (128–135 kJ/mol). The Freeman–Carroll method is suitable to describe the soot combustion in the NO/O2/He atmosphere, with the activation energies for the catalysts in the range of 97–112 kJ/mol and the average value of reaction order equal to 1.36.  相似文献   

20.
煤气化中NO_x及其前驱物释放规律研究   总被引:1,自引:0,他引:1  
采用U型管反应系统,研究了氧浓度、气流速率和气化温度对神木煤气化过程中NO_x及其前驱物的释放规律.研究发现:气化时生成的HCN和NH_3总量比热解时大幅下降,表明O_2的引入抑制了H自由基的可获得性.随着氧浓度的增加,NO的收率先减后增,而NO_2收率几乎没有变化.氧浓度较低时,生成的高浓度CO阻止了挥发分氮向NO的转化.气流速率对含氮气相产物释放影响各不相同.低温气化产物以NO_2和HCN为主,NO_2主要来自进样期挥发分的缓慢氧化,而高温气化产物中的NH_3的生成主要来源于焦炭氮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号