首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Currently, the most examinations and markers are of limited diagnostic and prognostic value in chronic inflammation of the pancreas and its malignant tumorous disease. The purpose of this pilot study was to measure thermal changes of blood plasma by differential scanning calorimetry (DSC) method on patients with chronic pancreatitis, and with operable or inoperable pancreatic adenocarcinoma. The study involved chronic pancreatitis patients (n = 5), in whom had to perform surgery due to any complications. In malignant pancreatic cancer group, according to resectability of the tumors, patients were divided into operable (curative R0 resection, n = 11) and inoperable (palliative double bypass, n = 5) subgroups. Peripheral blood samples were collected from the patients preoperatively and from healthy controls (n = 5). Denaturation of plasma components was detected in Setaram Micro DSC-II calorimeter. DSC results showed decrease of T m1 (48.8 °C) and T m2 (61.8 °C) and increase of T m3 (68 °C) in chronic pancreatitis group compared to healthy controls (56.2, 63.1 and 68 °C). Similar tendencies were in patients with operable (48.2, 61.5, 67.6 °C) and inoperable (48.1, 62.4, 69 °C) pancreas adenocarcinoma. Calorimetric enthalpy mildly decreased in each group except for operable group (1.3 J g?1 ?H) compared to controls (1.2 J g?1 ?H). This research confirmed that DSC parameters of blood plasma on patients with chronic pancreatitis and pancreatic adenocarcinoma are clearly distinct from thermodynamical data of healthy controls. After better validation of calorimetric data, it can be a noninvasive tool for diagnostic and monitoring of pancreatic diseases.  相似文献   

2.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

3.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

4.
This study is to investigate the effect of nitrile butadiene rubber (NBR as impact modifier) together with Al2O3/YSZ (toughening) as filler loading in PMMA denture base on the thermal and mechanical properties. PMMA matrix without fillers was mixed between PMMA powder and 0.5 mass% of BPO, and it is used as the control group. The liquid components consist of 90% of methyl methacrylate (MMA) and 10% as the cross-linking agent of ethylene glycol dimethacrylate. The denture base composites were fabricated by incorporating PMMA powder and BPO and fixed at 7.5 mass% NBR particles and filler loading (1, 3, 5, 7 and 10 mass%) of Al2O3/YSZ mixture filler by (1:1 ratio) as the powder components. The ceramic fillers were treated with silane (γ-MPS) and the powder/liquid ratio (P/L) according to dental laboratory practice. The TGA data obtained show that the PMMA composites have better thermal stability compared to unreinforced PMMA, while DSC curves show slightly similar Tg values. DSC results also indicated the presence of unreacted monomer content for both reinforced and unreinforced PMMA composites. The fracture toughness, Vickers hardness and flexural modulus values were statistically increased compared to the unreinforced PMMA matrix (P?<?0.05).  相似文献   

5.
Thermal analysis on organically modified Ca2+-montmorillonite (OMON) and its source materials—octadecylamine (ODA) and Ca2+-montmorillonite (Ca2+-Mon)—was studied using thermally stimulated current (TSC) technique. The appearance of ρ MON peak with the T max = 75 °C shows the ability of the developed TSC system to demonstrate the relaxation effects of dehydration in Ca2+-Mon. It appeared within the temperature range of DSC endothermic peak (30–100 °C) where the T mMON = 58 °C. Segmental motions of ODA chains and structural disruptions in the modifier agent compound produced TSC α ODA, ρ ODA and ρ 1ODA peaks that are comparable to thermal transition and endothermic peaks in DSC profile (T gODA, T m1ODA and T m2ODA). The effect of localized motion in ODA chains as revealed by the TSC βOMON peak (T max = ?23 °C), however, is absent in the DSC profile of OMON. It shows TSC technique has high sensitivity in detecting various relaxation behaviors at molecular level. More evidences are demonstrated by the ρ OMON (T max = 86 °C) and ρ 1OMON (T max = 105 °C) peak originated from the ODA chains structures. These peaks also confirm the intercalation of the modifier cations inside the Ca2+-Mon gallery.  相似文献   

6.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

7.
Guanidine dichloroacetate was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurement shows that this compound undergoes a reversible phase transition at about 275 K with a heat hysteresis of 28 K. Step-like dielectric anomaly observed at 274 K further confirms the phase transition. The single-crystal X-ray diffraction data suggested that these was a transition from a room-temperature phase with the space group of P21/n (a = 8.030(5), b = 12.014(9), c = 8.124(6) Å, β = 96.089(1)°, V = 779.3(1) Å3, and Z = 4) to a low-temperature one with the space group of P21/c (a = 7.941(2), b = 11.828(3), c = 10.614(2) Å, β = 130.985(1)°, V = 752.6(3) Å3, and Z = 4). The displacements of hydrogen bonds induce the structure phase transition.  相似文献   

8.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

9.
The lowest energy structures and electronic properties of ErSi n (n = 3–10) and their anions were probed using the ABCluster global search technique combined with the PBE, TPSSh and B3LYP schemes. The lowest energy energies of neutral ErSi n (n = 3–10) can be regarded as substituting a Si atom of the lowest energy structure of Sin+1 with a Er atom. The additional electron effects on the geometries are very strong, resulting the lowest energy structures of ErSi n ? with n > 6 are different from their neutral counterparts. Starting from n = 7, the potential energy surfaces of ErSi n ? are very flat, resulting isomeric arrangements occur and functional dependence of the predicted most stable structures exist. The AEAs, VDEs and simulated PES of ErSi n (n = 3–10) are reported. Introducing Er to Si cluster can significantly improve photochemical reactivity of the cluster. The 4f electron of Er atom in ErSi4, ErSi n ? (n = 4, 7–10) prefers to take part in bonding. The total magnetic moments of ErSi n and their anions are mainly provided by the 4f electrons of Er atom. The dissociation energies of Er from ErSi n and their anions were evaluated to inspect relative stability.  相似文献   

10.
Surgical techniques including new, possible resources to repair injured joints and damaged cartilage are still evolving. The exact effects of cryopreservation on the collected cartilage samples require accurate determination prior to utilization. The aim of our study was to analyze the impact of cryopreservation at ?80 °C on the structural properties of the human cartilage. The effects of storage time were also evaluated in conjunction with optimal utilization. The human cartilage samples were derived during operation and considered to be waste material. Samples were fresh frozen and stored at ?80 °C. Cryopreservation times were: 0, 1, 3, 6, and 12 weeks. To assess the biological and structural properties of the frozen human cartilage, we performed calorimetric examinations using differential scanning calorimetry (DSC). During the first 3 weeks, the calorimetric enthalpy (ΔH cal) showed an increasing tendency compared to controls, parallel with the denaturation temperature (T m): ΔH cal (J g?1) = 1.60 versus 2.49, T m1 (°C) = 61.73 versus 63.64. After the sixth week, both the enthalpy and the transition temperature decreased, compared to the control samples. The decrease in both the calorimetric enthalpy and T m could be explained by the decrease in bound water and the time-related degeneration in the structure of the cartilage. Here we found that the duration of cryopreservation interferes with the morphology of human cartilage samples only after 6 weeks of storage time. The thermal analyzes of human cartilage by DSC could be a useful method to follow the morphological changes in the clinical practice.  相似文献   

11.
A mixed oxide-covered mesh electrode composed of NiCo2O4 (MOME-NiCo2O4) was prepared on a stainless-steel substrate using thermal decomposition (slow-cooling rate method). Surface, bulk and electrochemical properties of MOME were studied using different techniques, namely scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) with determination of the electrochemical porosity (?) and morphology factor (φ) parameters, quasi-stationary polarisation curves (PC) and electrochemical impedance spectroscopy (EIS). SEM images revealed a good coverage of the metallic wires by a compact oxide layer (absence of cracks). XRD analysis confirmed the formation of the spinel NiCo2O4 with the presence of NiO. The ‘in situ’ surface parameters denoted as ? and φ exhibited values of 0.39 and 0.33, respectively, revealing that the electrochemically active surface area is mainly confined to the ‘outer/external’ surface regions of the oxide layer. The PC was characterised by two Tafel slopes distributed in the low (b 1 = 46 mV dec?1) and high (b 2 = 59 mV dec?1) overpotential domains. The corresponding apparent exchange current densities were j 0(1) = (3.43 ± 0.11) × 10?6 A cm?2 and j 0(2) = (6.70 ± 0.08) × 10?6 A cm?2, respectively. The EIS study accomplished in the low-overpotential domain revealed a Tafel slope (b 1) of 51 mV dec?1. According to the spin-trapping reaction using N,N-dimethyl-p-nitrosoaniline (RNO), the MOME-NiCo2O4 electrode exhibited good performance for the generation of weakly adsorbed hydroxyl radicals (HO?) during the OER in electrolyte-free water.  相似文献   

12.
Solar absorption cooling is a wonderful method to provide cold energy by exploiting solar energy. Phase change materials (PCMs) that store latent thermal energy are indispensible in solar absorption cooling system. It is worthwhile to find new PCMs due to the demanding on the temperature of the stored thermal energy which in turn would power the absorption chiller. In this paper, two compounds: 1-bromo-2-methoxynaphthalene (compound 1) and 2,2′-diphenyl-4,4′-bi(1,3-dioxane)-5,5′-diol (compound 2), were selected as potential PCMs. Their thermal energy storage properties and thermal stability were characterized by differential scanning calorimetry and thermogravimetric analysis. The results showed that both compounds could be applied as good PCMs in solar absorption cooling systems. Compound 1 melted at 356.82 K with the ΔH of 98.81 J g?1, while compound 2 melted in a broad temperature range with the melting point of 466.26 K and the ΔH of 101.4 J g?1. Both compounds exhibited good thermal stability. Furthermore, the molar specific heat capacities of these two compounds were measured by temperature-modulated differential scanning calorimetry from 198.15 K to the temperature that they started to decompose, and the thermodynamic functions of [H TH 298.15] and [S TS 298.15] were calculated based on the specific heat capacities data.  相似文献   

13.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

14.
Two thiosemicarbazones, (E)-2-(2,4-dimethoxybenzylidene)thiosemicarbazone (24-MBTSC (1)) and (E)-2-(2,5-dimethoxybenzylidene)thiosemicarbazone (25-MBTSC (2)), derived from 2,4-dimethoxybenzaldehyde and 2,5-dimethoxybenzaldehyde, respectively, with thiosemicarbazide have been synthesized and their structures were characterized by elemental analyses, FT-IR, 1H NMR spectroscopy, and X-ray single-crystal diffraction analysis. Molecular orbital calculations have been carried out for 1 and 2 by using an ab initio method (HF) and also density functional method (B3LYP) at 6-31G basis set. Compound 1 crystallizes in the monoclinic system, space group P21/c, with a = 8.1342(5) Å, b = 18.1406(10) Å, c = 8.2847(6) Å, β = 109.7258(17)°, V = 1150.75(12) Å3, and Z = 4, whereas compound 2 crystallizes in the orthorhombic system, space group Pbca, with a = 11.0868(6) Å, b = 13.1332(6) Å, c = 15.9006(8) Å, V = 2315.2(2) Å3, and Z = 8. The compounds 1 and 2 displays a trans-configuration about the C=N double bond.  相似文献   

15.
The N-(2-pyridyl) 4-toluene sulfonamide as a free ligand (PTS) was prepared from the reaction of 2-amino pyridine and 4-toluenesulfonyl chloride in the presence of potassium hydroxide solution 1 M as a base and THF was used as a solvent. The complex tetrakis [N-(2-pyridyl) sulfonamide] di palladium (1) (Pd2L4) was also prepared from the reaction of PdCl2(CH3CN)2 using (PTS) in the presence of NaOH 0.5 M and its application in Heck and Suzuki reactions. This complex consists of a binuclear unit consisting of four ligands linked to two palladium atoms via the nitrogen of pyridines ring and the nitrogen of sulfonamides. These compounds were confirmed by FT-IR and 1H NMR spectroscopy. Moreover, the structure of the complex was studied by single-crystal X-ray diffraction method. The green crystal of Pd2L4 [L = N-(2-pyridyl) sulfonamide](1) was found to crystallize in the monoclinic space group C2/c with a = 18.2013(19), b = 19.7544(16), c = 17.2898(19) Å, β = 120.179(8) °; V = 5374.0(9) Å3; Z = 4; the final R 1 = 0.0894, wR 2 = 0.1754 (or 5867 observed reflections and 318 variables). The Pd–Pd distance is 2.567(2) Å. In addition, PTS and Pd2L4 presented different antibacterial behaviors. The free ligand was active against Staphylococcus aureus and Escherichia coli, but the complex was inactive against them.  相似文献   

16.
A novel bis-heterocyclic compound was synthesized and characterized. The crystal structure of the title compound (C22H20ClN5OS, Mr = 437.94) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.646 (2), b = 9.148 (3), c = 14.540 (4) Å, α = 94.422 (4), β = 98.500 (4), γ = 102.823 (4)°, V = 1101.8 (5) Å3, Z = 2, F(000) = 312, Dc = 1.320 g/cm3, μ = 0.2900 mm?1, the final R 1 = 0.041000 and wR 2 = 0.1160 for 2675 observed reflections with I > 2σ(I). A total of 5623 reflections were collected, of which 3866 were independent (R int = 0.019000). The fungicidal activity of title compound was determined, the results showed the title compound displayed moderate fungicidal activity against G. zeae Petch, Phytophthora infestans (Mont.) de Bary, Botryosphaeria berengeriana f. sp. piricola (Nose) koganezawa et Sakuma, Fusarium oxysporum f.sp. cucumerinum, and Cercospora arachidicola.  相似文献   

17.
For the first time in the published literature, a study is described concerning the use of the saw-sedge Cladium mariscus (C. mariscus) for adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous systems. Among the experiments carried out, the elemental composition of C. mariscus was determined (C = 48.0 %, H = 7.1 %, N = 0.95 %, S = 0.4 %), FTIR spectroscopic analysis was performed to confirm the chemical structure of the adsorbent, and porous structure parameters were measured: BET surface area (A BET  = 0.6 m2/g), total pore volume (V p  = 0.001 cm3/g) and average pore size (S p  = 6.6 nm). It was shown that the effectiveness of removal of 2,4-D from aqueous systems using C. mariscus depends on parameters of the process: contact time, system pH, mass of sorbent, and temperature. Maximum adsorption was attained for a solution at pH = 3. Further increase in the alkalinity of the tested systems led to a reduction in the effectiveness of the process. The kinetic of adsorption of 2,4-D by C. mariscus was also determined, and thermodynamic aspects were investigated. The experimental data obtained correspond to a pseudo-second-order kinetic model of type 1. Additionally the negative values obtained for ΔHº indicate that the process is exothermic, and the negative values of ΔGº show it to be spontaneous. As the temperature of the system increases the spontaneity of adsorption is reduced, in accordance with the exothermic nature of the process.  相似文献   

18.
A new three-dimensional platinum(II)–thallium(I) coordination polymer [{Pt(pda)(NHCOtBu)2}4Tl4][Pt(CN)4]2·2H 2 O (pda = 1,2-propyldiamine) has been prepared from the direct reaction of [Tl2Pt(CN)4] and [Pt(pda)(NHCOtBu)2] in water, and its structure was characterized by X-ray diffraction analysis. The compound crystallizes in monoclinic, space group Pn, a = 11.567(2) Å, b = 11.570(2) Å, c = 37.677(8)Å, β = 94.64(3)°, V = 5025.8(17) Å3, Z = 2, R1 = 0.0679 and wR2 = 0.1574 [I >  2σ (I)], Goodness-of-fit on F 2 = 1.055. The compound exhibits a novel 3D network structure consisting of [Pt(CN)4]2? connected 1D infinite Pt–Tl–Pt–Tl chains via strong Pt–Tl bonds.  相似文献   

19.
Schizophrenia is a debilitating mental disorder which affects approximately 1% of the world’s population. Clozapine is an atypical antipsychotic showing unmatched effectiveness in the control of treatment-resistant schizophrenia. Unlike typical antipsychotics, clozapine does not induce extrapyramidal side effects (EPS), tardive dyskinesia or elevate prolactin levels. However, clozapine can induce a potentially fatal blood disorder, agranulocytosis, in 1–2% of patients, severely limiting its clinical use. The model for antipsychotic activity under investigation is based on obtaining a clozapine-like profile with preferential dopamine D4 and serotonin 5-HT2A receptor affinity. Profiled herein are three unique members of a series of prospective antipsychotic agents. Compound (I) originated from the structural hybridization of the commercial therapeutics, clozapine and haloperidol, whilst compounds (II) and (III) possess an alternative tricyclic nucleus derived from JL13; a clozapine-like atypical antipsychotic developed by Liégeois et al. These compounds have been synthesized and characterized by means of elemental analysis, IR, 1H and 13C-NMR spectroscopy, MS and X-ray diffraction. Compound (I) crystallizes in space group P(?1) with a = 10.5032(1), b = 10.6261(2), c = 12.6214(3) Å, α = 81.432(1)°, β = 83.292(1)°, γ = 61.604(1)°, Z = 2, V = 1223.62(4) Å3, C28H29ClN4O, M r = 473.00, D c = 1.284 Mg/m3, μ = 0.185 mm?1, F(000) = 500, R = 0.0506 and wR = 0.1304. Compound (II) crystallizes in the monoclinic space group P21/c with a = 10.8212(2), b = 9.3592(2), c = 22.9494(5) Å, β = 106.471(1)°, Z = 4, V = 2228.88(8) Å3, C25H25ClN4O2, M r = 448.94, D c = 1.338 Mg/m3, μ = 0.202 mm?1, F(000) = 944, R = 0.0529 and wR = 0.1129. Compound (III) crystallizes in the monoclinic space group P21/c with a = 10.5174(2), b = 9.3112(2), c = 24.2949(5) Å, β = 98.666(1)°, Z = 4, V = 2352.03(8) Å3, C25H24Cl2N4O2, M r = 483.38, D c = 1.365 Mg/m3, μ = 0.306 mm?1, F(000) = 1008, R = 0.0478 and wR = 0.1067. The solid state conformations of (I), (II) and (III) exhibit the characteristic V-shaped buckled nature of the respective dibenzodiazepine and pyridobenzoxazepine nuclei with the central seven-membered heterocycle in a boat conformation. The molecules of (I) form a head-to-tail dimeric motif stabilized by hydrogen bonding. The results of a conformational analysis of compounds (I)–(III) investigating the effect of environment (in vacuo and aqueous solution) are presented. These analogues were tested for in vitro affinity for the dopamine D4 and serotonin 5-HT2A receptors and their comparative receptor binding profiles to clozapine and JL13 are reported.  相似文献   

20.
The molecular and crystal structures of 1,2-bis(3,4-dimethoxyphenyl)ethane-1,2-dione (TMBZ = tetramethoxybenzil) were determined by a single-crystal X-ray diffraction, 1H NMR, and FT-IR spectroscopy. The compound TMBZ (C18H18O6, M r = 330.32) crystallized in the orthorhombic Fdd2 space group wherein: a = 39.145(4), b = 18.167(2), c = 4.3139(5) Å and β = 90°, Z = 8. The packing of the molecules in the crystal lattice is stabilized by intermolecular C–H?O contacts in the herringbone arrangement. The molecular geometry and harmonic frequencies of TMBZ in the ground state were calculated utilizing density functional (B3LYP) method with the 6-311++G(d, p)-basis set. The density functional theory optimized the geometric structure, and vibrational wave numbers of TMBZ in gas phase were compared with the experimental data. A complete assignment of the fundamentals was proposed based on the total energy distribution calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号