首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mixed-ligand metal complexes based on ethanolamines and simple monosubstituted benzoic acids, in particular, mono- and binuclear copper complexes with monoethanolamine (MEA) and p-nitrobenzoic acid (PNBA), [Cu2+((PNBA)2 -(MEA)2)] (I) and [2Cu2+((PNBA)4 -(MEA)2(H2O)2)] (II), were prepared for the first time. The structures of the complexes were characterized by FT IR spectroscopy and X-ray diffraction (CIF files CCDC no. 1497849 (I) and no. 1497848 (II)). The doubly charged copper ions are coordinated at the vertices of octahedra, which are highly distorted due to the Jahn–Teller effect. In the crystals of the mononuclear complex I, the molecules are joined into columns, whereas in the binuclear compound II, a three-dimensional framework is formed owing to intermolecular H-bonds involving the nitro group. Fungicidal activities were found for compounds I, II, MEA, PNBA, previously obtained single-ligand copper complexes with MEA and PNBA, and MEA- and PNBA-based organic salt. The biological activity gradually increases in the series: ligand, single-ligand metal complex, organic salt, mono- and binuclear mixed-ligand complex, i.e., some ligands and copper ions show a synergistic effect.  相似文献   

2.
Two complexes, namely, triaqua(18-crown-6)strontium dibromide monohydrate (I) and diaquabromo(18-crown-6)barium bromide (II), are synthesized. Their crystal structures are determined by X-ray diffraction analyses. For complex I, space group C2/c, a = 17.547 Å, b = 10.246 Å, c = 14.786 Å, β = 123.08°, Z = 4. For complex II, space group Pnma, a = 17.753 Å, b = 17.465 Å, c = 6.629 Å, Z = 4. The structures are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.056 (I) and 0.042 (II) for 2696 (I) and 2440 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). Both complex cations—randomly disordered [Sr(18C6)(H2O)3]2+ in complex I and [BaBr(18C6)(H2O)2]+ in complex II—are of the host-guest type. The Sr2+ (Ba2+) cation resides in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In the structures complexes I and II, the coordination polyhedra of the Sr2+ and Ba2+ cations (coordination number 9) can be described as distorted hexagonal bipyramids with one apex at the O atom of the water molecule in complex I or at the Br? ligand in complex II and the other split apex at the O atoms of two water molecules.  相似文献   

3.
The synthesis and X-ray diffraction and IR spectroscopic study of (UO2)2(mac)4(L)3 · H2O crystals, where mac is the methacrylate ion C3H5COO and L is carbamide (I) or methylcarbamide (II), have been performed. Complexes I and II have a homotypic structure: crystals contain two kinds of mononuclear uranium-containing complexes, i.e., cationic [UO2(mac)(L)3]+ and anionic [UO2(mac)3]. The crystallographic formula of complexes in structures I and II is AB01M 3 1 + AB 3 01 (A =UO22+ B01 = mac, M1 = L). The uranium-containing complexes in structures I and II are linked into a framework by means of electrostatic interactions and a system of hydrogen bonds. Despite the similar compositions and structures of the uranium-containing complexes, their packings into a three-dimensional framework appreciably differ from each other.  相似文献   

4.
A reaction between VOSO4, 2,6-diacetylpyridine, and nicotinohydrazide in a molar ratio of 1: 1: 2 afforded two complexes differing in both color and crystal shape as well as in chemical composition and molecular structure. The compositions and structures of the vanadium complexes were determined by IR spectroscopy and X-ray diffraction (CIF files CCDCnos. 1411235 (I) and 1411236 (II)). These complexes can be formulated as [V 2 II (H2L)2](NO3)4 ? H2O (I) and [VIV(=O)(H2L)(SO4)] ? 5H2O (II), where H2L is 2,6-diacetylpyridine bis(nicotinylhydrazone). Complex I consists of centrosymmetric dinuclear complex cations [V2(H2L)2]4+, NO 3 - anions, and crystal water molecules in a ratio of 1: 4: 1; complex II is built from molecular V(IV) complexes and crystal water molecules in a ratio of 1: 5. The coordination polyhedron of the metal atom in I is a tetragonal pyramid made up of the electron-donating atoms N3O2 of two ligands H2L. The coordination polyhedron of the metal atom in II is a pentagonal bipyramid made up of the electron-donating atoms N3O2 of one neutral five-coordinate ligand H2L and two O atoms coming from the oxo ligand and the SO 4 2- anion coordinated in a monodentate fashion.  相似文献   

5.
Some structural features of 12 mononuclear octahedral d 2-Re(V) monooxo complexes (IХII) with the oxygen atoms of bidentate chelate (О,S) acido ligands (Lig) and a similar complex with the oxygen atom of a bidentate chelate (О,С) monoanionic ligand (XIII) have been considered. The O(Lig) atoms are in trans positions to О(oxo) ligands in eleven complexes IХ and XIII and in cis positions to oxo ligands in two complexes XI and XII. In all the cases, Re–O trans bonds are longer than Re–O cis (or Re–Ostand).  相似文献   

6.
Two complexes, (2.2.2-cryptand)rubidium chloride and bromide hydrates [Rb(Crypt-222]Hal · 3.5H2O (Hal = Cl (I) and Br (II)), are synthesized. The structures of isomorphic crystals of compounds I and II are studied by X-ray diffraction analysis. The crystals are trigonal: space group P \(\overline 3 \), Z = 2; I: a = 11.810 Å, c = 11.302 Å; II: a = 11.890 Å, c = 11.402 Å. The structures are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.060 (I) and 0.077 (II) for 2650 (I) and 2700 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). In crystals of complexes I and II, the [Rb(Crypt-222)]+ cation of the host-guest type lies on the crystallographic axis 3 and has the approximate symmetry D 3. In complexes I and II, the coordination polyhedron of the Rb+ cation is a two-base-centered trigonal prism somewhat distorted to an antiprism. The crystals of compounds I and II contain H-bonded disordered cubes of the water molecules and Cl? or Br? anions.  相似文献   

7.
Coordination complexes of transition metal cations (CoII, NiII, CuII and ZnII) containing coumarilate and N,N′-diethylnicotinamide were synthesized. The structural characterization and thermal behaviour analysis of novel samples synthesized were conducted through elemental analysis, magnetic susceptibility, solid-state UV–Vis, direct and injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA and single crystal X-ray diffraction methods. The structural details of single crystals of [Co(dena)2(H2O)4](coum)2 (I) and [Cu(coum)2(dena)2(H2O)2] (III) complexes were resolved completely. Moreover, the results of analysis obtained for [Ni(coum)2(dena)2(H2O)2] (II) and [Zn(dena)2(H2O)4](coum)2 (IV) complexes were interpreted considering the samples with crystal structures defined and made assumptions about the structural details. It was determined that the complex of CoII metal cation has salt-type structure and the coordination number of metal is accomplished to six as the sum of 4 mol of water and also 2 mol of N,N′-diethylnicotinamide ligands in trans position located within the coordination sphere. It was observed that 2 mol of coumarilate anions are located outside the coordination sphere and have stabilized to the charge (2+) of metal. The CuII complex has totally molecular structure, and the coordination sphere of metal cation was 6 as the sum of 2 mol of water, 2 mol of N,N′-diethylnicotinamide and 2 mol of monoanionic monodentate coumarilate ligands. All ligands have been located in –trans position. The geometry of both complex structures is distorted octahedral. It is assumed that the NiII complex structure is isostructural with CuII complex structure and also does ZnII complex with CoII structure. It was determined that the decomposition products obtained from thermal analysis are the oxides of related metal cations.  相似文献   

8.
Two new complexes were synthesized, namely, 7: 2 (2.2.2-cryptand)potassium chloride and (2.2.2-cryptand)ammonium bromide(0.75)chloride(0.25) hydrates: [M(Crypt-222)]+ · Hal? · 3.5H2O, where M = K, Hal = Cl (I) and M = NH4, Hal = Br0.75Cl0.25 (II). The structures of two isomorphous crystals were studied by X-ray diffraction analysis. Trigonal (space group P \(\bar 3\), Z = 2) structures I (a = 11.763 Å, c = 11.262 Å) and II (a = 11.945 Å, c = 11.337 Å) were solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.057 (I) and 0.065 (II) for all 2626 (I) and 1654 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). In structures I and II, the host-guest [M(Crypt-222)]+ complex cation lies on the threefold crystallographic axis and has the approximate D 3 symmetry. In complex I, the coordination polyhedron of the K+ cation (CN = 8) is a bicapped trigonal prism somewhat distorted toward an antiprism. Complexes I and II contain H-bonded disordered cubes of the water molecules and the Cl? or Br? anions.  相似文献   

9.
Two novel complexes, (AuCl)4L3(I) and (PdCl2)2L3(II) (L3 is calix[4]arene-thioether), were synthesized and their structures were determined. In complex I, one thioether group of molecule L3 is coordinated to every Au atom. In complex II, the bidentate coordination of L3 to the Pd atoms is observed; two thioether groups are in the trans-positions in the Pd square surrounding. Both complexes have the layered crystal lattices. In the Au complex, the layers are more stable due to the short contacts Au-Au (3.19–3.23 Å).  相似文献   

10.
Two new oxidovanadium(V) complexes, [VO(L)(Ehp)] (I) and [VO(L)(Aha)] (II), where L is the dianionic form of 4-bromo-N'-(4-oxopentan-2-ylidene)benzohydrazide (H2L), Ehp is the monoanionic form of 2-ethyl-3-hydroxy-4H-pyran-4-one (HEhp), and Aha is the monoanionic form of acetohydroxamic acid (HAha), were prepared and characterized by elemental analysis, infrared and electronic spectra, and 1H NMR spectra. Structures of the complexes were further confirmed by single crystal X-ray diffraction (CIF files CCDC nos. 1477847 (I), 1477850 (II)). H2L coordinates to the V atom through the two enolic O atoms and the imino N atom. The ligands Ehp and Aha coordinate to the V atoms through bidentate OO donor set. The V atoms of the complexes are in octahedral coordination, with the oxo group furnished the octahedral geometry. The complexes show effective antibacterial activity against Bacillus subtilis.  相似文献   

11.
The cation-induced aggregation of sandwich crown-substituted complexes [Ln(R4Pc)2] (Ln = Lu (I) and Yb (II), R4Pc2? is the 4,5,4′,5′,4″,5″,4?,5?-tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion) and Ln2(R4Pc)3(Ln = Lu (III) and Yb (IV) in a CDCl3-DMSO-d 6 solution has been studied by 1H NMR. The data obtained are consistent with the conclusions concerning the composition of supramolecular aggregates drawn from spectrophotometric titration data. The molecules of double-decker complexes I and II form supramolecular oligomers, whereas triple-decker complexes III and IV form supramolecular dimers, which is presumably due to the stronger distortion of the planes of the outer decks of the triple-decker complexes as compared to their double-decker analogues.  相似文献   

12.
Two copper complexes with long rigid ligands, Cu(Tta)2(L1) (I), and Cu(Tta)2(L2) (II), where L1 = (E)-3-(4-(1H-benzo[d]imidazol-1-yl)-(4-phenyl)phenyl)-1-phenylprop-2-en-1-one, L2 = (E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-phenyl)phenyl)prop-2-en-1-one), have been synthesized and characterized. The single-crystal X-ray analysis (CIF files CCDC nos. 1409671 (I) and 1409672 (II)) for complexes I and II demonstrates that each copper ion assumes a distorted square-pyramidal MO4N polyhedron in which four oxygen atoms come from the Tta ligands, and one nitrogen atom comes from the N-donor ligand. Both of the complexes are linked into 3D networks through weak intermolecular interactions.  相似文献   

13.
The 2,11-dithia[3.3](3,5)pyrdinophane (L1) has been synthesized by a new method and characterized by 1H NMR, which is used to form coordination complexes C14H14N4O6S2Ni (I) by addition of Ni2+ cation and C14H14N3O3S2Ag (II) by addition of Ag+ cation. 2,11,20-Trithia[3.3.3](3,5)pyridinophane (L2) and 2,11,20,29-tetrathia[3.3.3.3](3,5)pyridinophane (L3) have also been synthesized as by-products. Single-crystal X-ray analysis reveals that the conformation of the L1 is syn(boat-chair), complexes I and II also adopt syn(boat-chair) (CIF files CCDC nos. 1400332 (I) and 700724 (II)). While in I, Ni(II) is coordinated with L1 with two nitrogen and four oxygen atoms, in II, Ag(I) is coordinated with L1 by two nitrogen and two sulfur atoms came from four ligands. In complexes I and II, the formation of three-dimensional structure depends on π???π stacking and hydrogen bonds.  相似文献   

14.
Two crystalline host-guest complexes are synthesized and studied using X-ray diffraction analysis: (18-crown-6)sodium tribromide [Na(18-crown-6)]+ · Br 3 ? (I) and (18-crown-6)potassium tribromide (with an admixture of bromodiiodide) [K(18-crown-6)]+ · (Br0.25I2.75)? (II). The structures of compound I (space group P21/n, a = 8.957 Å, b = 8.288 Å, c = 14.054 Å, β = 104.80°, Z = 2) and compound II (space group Cc, a = 8.417 Å, b = 15.147 Å, c = 17.445 Å, β = 99.01°, Z = 4) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.098 (I) and 0.036 (II) for all 2311 (I) and 2678 (II) independent measured reflections on a CAD-4 automated diffractometer (λMoK α). Similar crystalline complexes I and II exist as infinite chains of alternating complex cations and trihalide anions linked to each other through weak Na-Br or K-I coordination bonds. In [Na(18-crown-6)]+ and [K(18-crown-6)]+ complex cations, the Na+ or K+ cation (coordination number is eight) is located in the center of the cavity of the 18-crown-6 ligand and coordinated by the six O atoms and two terminal Br or I atoms of two trihalide anions lying on opposite sides of the rms plane of the crown ligand.  相似文献   

15.
The complexes [AgL2(NO3)] (I) and [AgL2(CH3SO3)] · H2O (II) (L is 2-methylquinoline, C10H9N) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Crystals of I are monoclinic, space group P21/n, a = 9.296(1) Å, b = 13.495(1) Å, c = 14.931(1) Å, β = 95.06(1)°, V = 1865.8(3) Å3, ρcalc = 1.624 g/cm3, Z = 4. Crystals of II are monoclinic, space group P21/n, a = 13.147(1) Å, b = 11.767(1) Å, c = 13.814(1) Å, β = 96.06(1)°, V = 2124.3(3) Å3, ρcalc = 1.599 g/cm3, Z = 4. Compounds I and II are composed of discrete complexes of similar structure but with different orientation of the methyl groups of ligand L (trans and cis arrangement, respectively). Both anions, NO 3 - and CH3SO 3 - function as a chelating weakly bound ligand for the Ag+ ion. The presence of water molecules in II is favorable for the formation of dimeric supramolecular moieties between the centrosymmetrically arranged Ag+ complexes with 2-methylquinoline. The luminescence spectra of solid complexes I and II showed a bathochromic shift as compared to the spectrum of L in acetonitrile. Complexes I and II have been characterized by 1H and 13C{H} NMR spectra in CD3CN.  相似文献   

16.
Two zinc(II) complexes, [Zn4(HOQ)6Ac2] (I) (HOQ = 8-hydroxylquinoline) and [Zn4(MeQ)6Ac2] (II) (MeQ = 2-methyl-8-hydroxylquinoline), were synthesized and characterized by IR spectroscopy, ESI-MS spectrometry, elemental analysis and single crystal X-ray diffraction analysis (CIF files CCDC nos. 1433544 (I) and 1433546 (II)). The in vitro cytotoxicity of the two complexes, which was first reported, was evaluated by MTT assay against a series of tumor cell lines as well as HL-7702 normal liver cell line. The results indicated that they showed significantly higher cytotoxicity than cispltain on BEL-7404 cells with IC50 values of 11.85 ± 0.06 μM (I) and 8.40 ± 0.07 μM (II), respectively. Further apoptosis mechanism studies on BEL-7404 cells suggested that their antitumor activities were achieved through cell apoptosis and arrest at G1 or S phase. The decline of mitochondrial membrane potential, the elevation of reactive oxygen species and cytoplasmic calcium concentration ([Ca2+]c), the raise of caspase-3/9 activity indicated that complexes I and II induced apoptosis of BEL-7404 by a mitochondrial dysfunction pathway. Investigations on the binding properties of complexes I and II to ct-DNA by UV-Vis, circular dichroism spectra and agarose gel electrophoresis indicated that the two complexes could bind with ct-DNA via an intercalative mode.  相似文献   

17.
Four polyoxometalate-based complexes, namely [CuI(dm4bt)2]3[PMo12O40] (1), H2[CuI(dm4bt)2]2{[Cu 2 I (dm4bt)3]2[SiW12O40]}[SiW12O40] (2), [CuI(dm4bt)2]5 {[CuI(dm4bt)][P2W18O62]} (3) and {Cu 2 II (dm4bt)2[Mo6O20]} (4) (dm4bt = 2,2′-dimethyl-4,4′-bithiazole), were synthesized hydrothermally from copper nitrate and various polyoxoanions. X-ray crystal structural analysis reveals that all four complexes have supramolecular structures, in which the dm4bt ligands coordinate with the Cu atoms to give different Cu/dm4bt fragments, which are further connected into supramolecular structures via non-bonding S···O interactions between Cu/dm4bt fragments and polyoxoanions. The crystal structures also reveal the crucial role of S···O interactions in the packing structures of complexes 14. The electrochemical and electrocatalytic properties of 13 with respect to bromate reduction were investigated.  相似文献   

18.
New hexanuclear Fe(III)–Mn(II, III) pivalates [Fe2 III Mn4 II(O)2(Piv)10(HPiv)4] (I) or [Fe4 III Mn2 III(O)2(Piv)12(CH2O2)(HPiv)2] · Et2O (II) are synthesized using the solid-state thermolysis of [Fe2Mn(O)(Piv)6(HPiv)3] (90°С). Complexes I and II differ by the ratio of iron and manganese ions, which depends on the atmospheric composition during thermolysis. The structures of compounds I and II are determined by X-ray diffraction studies. According to the parameters of the Mössbauer spectrum, complex I contains the Fe3+ ions in the high-spin state in the octahedral environment of oxygen atoms.  相似文献   

19.
Reactions of CpMn(CO)(NO)SnCl3 (I) with sodium benzenethiolate and sodium benzenesele-nolate gave orange crystals of the complexes CpMn(CO)(NO)Sn(EPh)3, where E = S (II) or Se (III). Treatment of complex II with photochemically generated W(CO)5(THF) yielded the adduct CpMn(CO)(NO)Sn(SPh)3 · W(CO)5 (IV). A similar treatment of complex III resulted in the formation of the ditungsten complex W2(CO)4(SePh)6 (V) with transfer of all chalcogenate groups from tin to tungsten. In reactions of complexes II and III with a Pt0 complex with phosphine and acetylene, (PPh3)2Pt(Ph2C2), the chalcogenate groups are transferred from tin. Only the known Pt(II) complexes (PPh3)2Pt(EPh)2), where E= S (VI) or Se (VII). Molecular structures IV and V were characterized by X-ray diffraction. It has been found that the Mn-Sn bond in complex IV (2.5479(9) Å) is nearly the same length as that found earlier for complex II (2.5328(17) Å) and is substantially shorter than the sum of the covalent radii of Mn and Sn (2.78 Å). The Sn-S bond is noticeably lengthened (2.5217(11) Å) only for the S atom bound to tungsten (W-S, 2.5696(12) Å), while the other Sn-S bonds (2.4413(12) and 2.4291(12) Å) are virtually the same as in complex II (on average, 2.441 Å). Complex V contains the direct W-W bond (2.8153(16) Å) supplemented with four benzeneselenolate bridges in which the W-Se bonds (on average, 2.642(2) Å) are longer than the two terminal W-SePh bonds (2.571(2) Å). All the W-Se bonds are much shorter than the sum of the covalent radii of W and Se (2.82 Å).  相似文献   

20.
Heteroligand complexes [Co2(HMTA)(iso-Bu2PS2)4] (I) (μeff = 4.67 μB) and [Cd2(HMTA)(iso-Bu2PS2)4] (II) have been synthesized. Single crystals of compounds I and II have been obtained. The crystals are monoclinic: a = 32.622(2) Å, b = 9.4891(6) Å, c = 21.7570(13) Å, β = 125.774(1)o, V = 5464.3(6) Å,3, Z = 4, ρcalcd = 1.331 g/cm3 for I; a = 34.6092(7) Å, b = 9.5595(2) Å, c = 22.3473(5) Å, β = 127.144(1)o, V = 5893.5(2) Å, Z = 4, ρcalcd = 1.355 g/cm3 for II; space group for both complexes C2/c. Structures I and II are based on discrete binuclear molecules. The coordination polyhedra of the Co and Cd atoms are distorted tetragonal pyramids NS4, with the bases formed by four S atoms of two bidentate chelating ligand iso-Bu2PS 2 ? and the axial vertices occupied by N atoms of bidentate bridging HMTA ligand. The character of interaction of the molecules in structures I and II is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号