首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
This study reports a sensitive solvent extraction flow-injection (FI) method for the simultaneous spectrophotometric determination of free cyanide and thiocyanate in human saliva and pralidoxime solutions. Cyanide and thiocyanate form colored (λmax=540 nm) ternary complexes with copper and 2,2′-dipyridyl-2-quinolylhydrazone (DPQH) that are extractable into chloroform. The determination of thiocyanates in the presence of cyanides is accomplished after on-line masking of the latter with formaldehyde through a binary inlet static mixer (BISM). Total thiocyanates and cyanides are determined in a second run, without the use of the masking agent. The proposed method allows the determination of the analytes in the range of 0-4 mg l−1 thiocyanates and 0-3 mg l−1 cyanides, with the 3σ detection limits being 0.007 and 0.004 mg l−1, respectively. The precision of the method (sr<1.0% at 1 mg l−1 CN or SCN, n=12 in both cases) and the sampling rates were quite satisfactory (60 injections per hour). The method was applied to the analysis of human saliva and pralidoxime solutions and gave recoveries in the range of 98.0-102.2% for both analytes whereas the mean relative error was er=1.7%.  相似文献   

2.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

3.
Archana Jain 《Talanta》2010,82(2):758-65
Headspace single-drop microextraction has been used for the determination of cyanide with ninhydrin in combination with fibre-optic-based cuvetteless microspectrophotometry which accommodates sample volume of 1 μL placed between the two ends of optical fibres, and has been found to avoid salient drawbacks of batch methods. This method involved hydrocyanic acid formation in a closed vial, and simultaneous extraction and reaction with 2 μL drop of ninhydrin in carbonate medium suspended at the tip of a microsyringe needle held in the headspace of the acidified sample solution. The method was linear in range 0.025-0.5 mg L−1 of cyanide. The headspace reaction was free from the interference of substances, e.g., thiocyanate, hydrazine sulphate, hydroxylammonium chloride and ascorbic acid. Sulphide was masked by cadmium sulphate, nitrite by sulphamic acid, sulphite by N-ethylmaleimide, and halogens by ascorbic acid. The limit of detection was found to be 4.3 μg L−1 of cyanide which was comparable to existing most sensitive methods for cyanide. However, the present method is far more simple. The method was applied to acid-labile and metal cyanides complexes by treatment with sulphide when metal sulphides were precipitated setting cyanide ion free, and to iron(II) and (III) cyanide complexes by their decomposition with mercury(II), the mercury(II) cyanide formed was then determined. These pre-treatment methods avoided cumbersome pre-separation of cyanide by methods such as distillation or gas diffusion. The overall recovery of cyanide in diverse samples was 97% with RSD of 3.9%.  相似文献   

4.
Luminescent surface-modified CdSe semiconductor quantum dots (QDs), with nanoparticle (NP) size distribution in the order of 2-7 nm, have been synthesized for optical determination of cyanide ions. The nanoparticles have been functionalised with tert-butyl-N-(2-mercaptoethyl)-carbamate (BMC) groups and exhibit a strong fluorescent emission at about 580 nm with rather long fluorescence lifetimes (several hundred nanoseconds) in aerated methanolic solution. The observed luminescence emitted by the synthesized nanocrystals was tremendously increased by photo-activation under sunlight exposure. The functionalised QDs turned out to exhibit excellent long-term stability when stored in the dark (no significant changes in QDs luminescence emission intensity was observed even after two months from synthesis). The functionalisation of the NPs with carbamate ligand allowed a highly sensitive determination of free cyanide via analyte-induced changes in the photoluminescence (fluorescence quenching of intensity at 580 nm and lifetime changes) of the modified quantum dots (excited at 400 nm). A detection limit of 1.1 × 10−7 M (2.9 μg l−1) of cyanide ions was obtained, while the interfering effect of other inorganic anions (including NO3, Cl or SCN) was negligible even at 200-fold level concentrations in excess of cyanide.  相似文献   

5.
Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiological half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatography (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL−1) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p < 0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics.  相似文献   

6.
An indirect voltammetric method is described for determination of cyanide ions and hydrogen cyanide, using the effect of cyanide on cathodic adsorptive stripping peak height of Cu-adenine. The method is based on competitive Cu complex formation reaction between adenine at the electrode surface and CN ions in solution. Under the optimum experimental conditions (pH=6.42 Britton-Robinson buffer, 1×10−4 M copper and 8×10−7 M adenine), the linear decrease of the peak current of Cu-adenine was observed, when the cyanide concentration was increased from 5×10−8 to 8×10−7 M. The detection limit was obtained as 1×10−8 M for 60 s accumulation time. The relative standard deviations for six measurements were 4 and 2% for the cyanide concentrations of 5×10−8 and 2×10−7 M, respectively. The method was applied to the determination of cyanide in various industrial waste waters such as electroplating waste water and also for determination of hydrogen cyanide in air samples.  相似文献   

7.
A simple, fast, low cost and sensitive direct β-correction spectrophotometric assay of cyanide ions based on its reaction with the reagent 4-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1,3-thiazin-6(3H)-one, abbreviated as HOTT in aqueous media of pH 7-10 is described. The electronic spectrum of the produced brown-red colored species showed well defined and sharp peak at λmax = 466 nm. The effective molar absorptivity for the produced cyano compound was 2.5 × 104 L mol−1 cm−1. Beer's law and Ringbom's plots were obeyed in the concentration range 0.05-2.0 and 0.30-1.5 μg mL−1 cyanide ions, respectively. The proposed method offers 16.0 and 50.3 μg L−1 lower limits of detection (LOD) and quantification (LOQ) of the cyanide ion, respectively. The analytical utility of the method for the analysis of cyanide ions in tap and drinking water samples was demonstrated and the results were compared successfully with the conventional cyanide ion selective electrode. The short time response and the detection by the naked eye make the method available for the detection and quantitative determination of cyanide in a variety of samples e.g. fresh and drinking water. Moreover, the structure of the produced colored species was determined with the aid of spectroscopic measurements (UV-Vis, IR, 1H and 13C NMR) and elemental analysis.  相似文献   

8.
For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), γ-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1–12 nmol L−1 for standard solution (high femotomole, absolute), except AdoMet (116 nmol L−1), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.  相似文献   

9.
A modified thiocyanate method without extraction by using rhodamine 6G as a secondary ligand was developed. Molybdenum in 1.0×10−2 M HCl, after the addition of ascorbic acid, was heated for 10 min in a 90 °C water bath for reduction. Suitable amounts of glycerine, Triton X-100, rhodamine 6G solutions and 2+1 (v/v) 9 M H2SO4+3 M KHSO4 were added in this order. This solution was allowed to cool to room temperature and the absorbance at 570 nm was measured against a reagent blank 45 min after the addition of thiocyanate solution and the second aliquot of Triton X-100 solution. The complex was stable for at least 4 h, the order of reagent addition was important, and thiocyanate should be in large excess. Beer’s law was obeyed over the range 0.9×10−6 to 1.1×10−5 M Mo with the molar absorptivity being 1.1×105 l mol−1 cm−1. The R.S.D. for the determination of 0.7 mg Mo l−1 was 1.83% (n=8). Possible interferences of various cations and anions on molybdenum determination were studied. The proposed method was applied to the determination of molybdenum in a dental alloy, Wiron 99.  相似文献   

10.
This Letter aimed to develop an efficient method for the determination of cyanide ion (CN). A novel colorimetric chemosensor 4-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1-allylpyridinium bromide (HPEAPB) was synthesized. HPEAPB displayed good selectivity toward CN over other competing anions in ethanol. A color change from yellow to red was immediately observed upon the addition of CN and the limit of detection (LOD) was 3.4 × 10−6 mol L−1. The sensing mechanism was discussed by UV–vis, 1H NMR titration, and a comparison study. Colorimetric test paper for CN was prepared by attaching HPEAPB to a chromatography paper, which could be used to detect CN in environmental samples as simply as a pH-indicator paper for pH value. The LOD of the test paper for CN was 2.0 × 10−4 mol L−1. This detection method for CN has potential applications in cyanide ion containing fields by combination of rapid and real-time advantages.  相似文献   

11.
A sensitive and highly selective spectrophotometric method is described for the determination of cyanide. It is based on a reaction of cyanide with aquacyanocobyrinic acid heptamethyl ester (ACCbs) reagent (orange color) at pH 9.5 to give dicyanocobester (DCCbs) (violet color). The increase of the absorption bands of the reaction product at 368 and 580 nm and the decrease of the reagent band at 353 nm are linearly proportional to the cyanide concentration. The method is used in static mode for determining cyanide over the concentration range 0.04-1.20 μg ml−1 with a detection limit of 0.02 μg ml−1 and for hydrodynamic analysis of 0.4-5.2 μg ml−1 cyanide. Application for batch and flow injection monitoring of cyanide in electroplating wastewater samples gives results agree within ± 1.2% with those obtained by the standard potentiometry using the cyanide ion selective electrode. The method is practically free from interferences by PO43−, NO3, NO2, SO42−, F, Cl, Br, I, S2− and SCN ions and gives results with average recoveries of 97.6-99.2%. Advantages offered by using ACCbs as a chromogen for cyanide assay are: (i) high selectivity and sensitivity of the coordination site of the reagent towards cyanide ion; (ii) fast reaction, since legation takes place at the axial position of the reagent; (iii) good solubility and stability of the reagent in aqueous solutions over a wide pH range; (iv) high stability of the reagent (ACCbs) and the colored complex product (DCCbs) and (v) possible absorbance measurements at three different wavelengths.  相似文献   

12.
Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl18O4, S13CN and 15NO3 with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 μg/L), thiocyanate (<10-5860, 89 μg/L), nitrate (650-8900, 1620 μg/L) and iodide (1.7-170, 8.1 μg/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function.  相似文献   

13.
Hydrogen cyanide can be produced by the pyrolysis of man-made polymers. Cyanide has been measured in the blood of healthy adults as well as the blood of fire survivors and fatalities. In healthy subjects the blood cyanide concentration of smokers is higher than that of non-smokers. Fire survivors and fatalities have been found to have higher cyanide levels than of control groups and the levels from fire fatalities are often higher than survivors. Blood concentrations quoted as normal, toxic or fatal are highly variable in the literature. Many studies have been performed to measure the blood cyanide levels in control subjects as well as those who have been exposed to fire but the values found differ. The values for control subjects can vary from none detected to 19 μmol dm−3 while those for fire survivors range from not detected to 150 μmol dm−3 and fatalities range from not detected to 284 μmol dm−3. Analytical techniques and published data are critically reviewed.Many of the existing antidotes for cyanide poisoning are highly toxic themselves and should ideally be administered at doses proportional to the amount of cyanide a patient has received to avoid compounding damage done by cyanide intoxication. For this reason, a rapid, accurate bedside assay of blood cyanide concentration that differentiates between bound and free cyanide would represent a leap forward in the clinical management of cyanide poisoning.  相似文献   

14.
The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of CN and SCN ions is described. The method is based on the difference in the rate of the reaction between CN and SCN ions with chloramine-T in a pH 4.0 buffer solution and at 30 °C. The produced cyanogen chloride (CNCl) reacts with pyridine and the product condenses with barbituric acid and forms a final colored product. The absorption kinetic profiles of the solutions were monitored by measuring absorbance at 578 nm in the time range 20-180 s after initiation of the reaction with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 31 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 10.0-900.0 and 50.0-1200.0 ng mL−1 for CN and SCN ions, respectively. The proposed method was successfully applied to the simultaneous determination of cyanide and thiocyanate in water samples.  相似文献   

15.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on butane -2,3-dione bis(salicylhydrazonato) zinc(II) [Zn (BDSH)] complex as carrier for thiocyanate-selective electrode is reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The sensor responds to thiocyanate in linear range from 1.0 × 10−6 to 1.0 × 10−1 M with a slope −56.5 ± 1.1 mV decade−1, over a wide pH range of 3.5-8.5. The limit of detection of the electrode was 7.0 × 10−7 M SCN. Selectivity coefficients determined with fixed interference method (FIM) indicate a good discriminating ability towards SCN ion in comparison to other anions. The proposed sensor has a fast response time of about 5-15 s and can be used for at least 3 months without any considerable divergence in potential. It was applied as indicator electrode in titration of thiocyanate with Ag+ and in potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

16.
A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L−1 with a detection limit 0.2 mg L−1 and sampling rate 72 h−1. The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%.  相似文献   

17.
A gas chromatography–tandem mass spectrometric (GC–MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L−1 of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60 °C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC–MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L−1 and 0.07 μg L−1 in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y = 0.7140x + 0.1997 and r2 = 0.9963 (for a working range of 0.07–10 μg L−1) and the accuracy was in a range of 98–102%; the precision of the assay was less than 7% in surface water. The common ions Cl, F, Br, NO3, SO42−, PO43−, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+, Fe2+ and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07–0.11 μg L−1 in 6 of 10 surface water samples.  相似文献   

18.
A [{hydrotris(3-phenyl-5-methyl-1-pyrazolyl)borate}(3-phenyl-5-methyl-pyrazole) nickel chloride] [TpPh,MeNi(Cl)PzPh,MeH] (I) has been synthesized and explored as ionophores for the preparation of a poly (vinyl chloride) (PVC) membrane sensor for azide and thiocyanate anions. The compounds [TpPh,MeNi(N3)PzPh,MeH] (II) and [TpPh,MeNi(SCN)PzPh,MeH] (III) were characterized by their crystal structures and proved to be bonded as monodentate through nitrogen atom of azide and thiocyanate anion. Potentiometric investigations also indicate high affinity of this receptor for thiocyanate and azide ions. PVC based membranes of I using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as SCN and N3 selective sensors. The best performance was shown by the membrane of thiocyanate with composition (w/w) of (I) (7%):PVC (31%):DBP (60%):HTAB (2%). This sensor works well over a wide concentration range 5.3 × 10−7 to 1.0 × 10−2 M with Nernstian compliance (59.2 mV decade−1 of activity) within pH range 2.5-9.0 with a response time of 11 s and showed good selectivity for thiocyanate ion over a number of anions. The sensor exhibits adequate life (3 months) and could be used successfully for the determination of thiocyanate content in human urine, saliva and river water samples. While the membrane of [TpPh,MeNi(Cl)PzPh,MeH] ionophore with composition (I) (6%):HTAB (4%):PVC (31%):TBP (59%) showed highest sensitivity and widest linear range for azide ion. These sensors exhibit the maximum working concentration range of 8.1 × 10−6 to 1.0 × 10−2 M with Nernstian slope of 59.3 mV decade−1 of activity. It can be applied for the monitoring of the azide ions concentration in aqueous black tea and orange juice samples.  相似文献   

19.
A high-performance liquid chromatographic method for the determination in human plasma of the recent noradrenergic and specific serotonergic antidepressant (NaSSA) mirtazapine and its two main metabolites, N-desmethylmirtazapine and 8-hydroxymirtazapine, has been developed. Fluorescence detection was used, exciting at λ = 290 nm and monitoring emission at λ = 370 nm. Separation was obtained by using a reversed-phase column (C8, 250 mm × 4.6 mm I.D., 5 μm) and a mobile phase composed of 75% aqueous phosphate buffer containing triethylamine at pH 3.0 and 25% acetonitrile. Melatonin was used as the internal standard. A careful pre-treatment of plasma samples was developed, using solid-phase extraction with phenyl cartridges (100 mg, 1 mL). The calibration curves were linear over a working range of 5-150 ng mL−1 for mirtazapine and of 2.5-75.0 ng mL−1 for N-desmethylmirtazapine and 8-hydroxymirtazapine. The limit of quantitation (LOQ) was 2.5 ng mL−1 and the limit of detection (LOD) was 1.25 ng mL−1 for all analytes. The method was applied with success to plasma samples from depressed patients undergoing treatment with mirtazapine. Precision data, as well as accuracy results, were satisfactory and no interference from other drugs was found. Hence the method is suitable for therapeutic drug monitoring of mirtazapine and its metabolites in depressed patients’ plasma.  相似文献   

20.
The polymer electrolytes based on poly N-vinyl pyrrolidone (PVP) and ammonium thiocyanate (NH4SCN) with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The shift in Tg values and the melting temperatures of the PVP-NH4SCN electrolytes shown by DSC thermo-grams indicate an interaction between the polymer and the salt. The dependence of Tg and conductivity upon salt concentration have been discussed. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibit high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. The conductivity values follow the Arrhenius equation and the activation energy for 20 mol% ammonium thiocyanate doped polymer electrolyte has been found to be 0.52 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号