首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

2.
The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L1) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L2) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L1: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb3+ ions with limits of detection of 3.4 × 10−8 mol L−1 for PME and 5.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb3+ ions in tap water and various binary mixtures with quantitative results.  相似文献   

3.
The potentiometric response characteristics of mercury ion-selective membrane electrodes based on 2-amino-6-purinethiol (I1) and 5-amino-1, 3, 4-thiadiazole-2-thiol (I2) were described. Ion selectivities were tested for various plasticizers, which were used as solvent mediators to incorporate the ionophores into the membrane. Effects of experimental parameters such as membrane composition, nature and amount of plasticizers and additives, pH and concentration of internal solution on the potential response of Hg2+ electrodes were investigated. The best performance was obtained with the electrode having a membrane composition (w/w) of (I1) (3.17%): PVC (31.7%): DOP (dioctylpthalate) (63.4%): NaTPB (sodium tetraphenylborate) (1.58%). The proposed electrode reveals a Nernstian response over Hg2+ ion in the concentration range of 7.0 × 10−8-1.0 × 10−1 M with limit of detection 4.4 × 10−8 M. The electrode shows good discrimination toward Hg2+ ion with respect to most common cations. It shows a short response time (10 s) for whole concentration range and can be used for 2 months without any considerable divergence in potentials. For evaluation of the analytical applicability, the electrode was used in the determination of Hg2+ ion in different environmental and biological samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

4.
A new fluorescent chemosensor for Hg2+ based on a dansyl amide-armed calix[4]-aza-crown was reported. It exhibits high sensitivity and selectivity toward Hg2+ over a wide range of metal ions in MeCN-H2O (4:1, v/v). The association constant of the 1:1 complex formation for 2-Hg2+ was calculated to be 1.31 × 105 M−1, and the detection limit for Hg2+ was found to be 4.1 × 10−6 mol L−1.  相似文献   

5.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

6.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

7.
Three fluorescent quinazolines thiophen-2-yl-5,6-dihydrobenzo-[4,5]imidazo[1,2-c]quinazoline (1), pyridin-3-yl-5,6-dihydrobenzo-[4,5]imidazo-[1,2-c]quinazoline (2) and phenyl-5,5′,6,6′-dihydrobenzo-[4,4′,5,5′]imidazo-[1.1′,2-c,2′-c]quinazoline (3) have been synthesized. Structures of 1 and 3 have been authenticated crystallographically. Quinazolines 1-3 exhibit highly selective ‘on-off’ switching for Hg2+ ions. The fluorescence intensity displayed a linear relationship with respect to Hg2+ concentration (0.1-1.0 μM; R2 = 0.99) with detection limit of 2.0 × 10−7 M.  相似文献   

8.
1-(Phenylselenomethyl)-1H-benzotriazole (L1) and 1-(4-methoxyphenyltelluromethyl)-1H-benzotriazole (L2) have been synthesized by reacting 1-(chloromethyl)-1H-benzotriazole with in situ generated nucleophiles PhSe and ArTe, respectively. The complexes of L1 and L2 with Pd(II) and Ru(II)(η6-p-cymene) have been synthesized. Proton, carbon-13, Se-77 and/or Te-125 NMR spectra authenticate both the ligands and their complexes. The single crystal structures of L1, L2 and [RuCl(η6-p-cymene)(L)][PF6] (L = L1: 3, L = L2: 4) have been solved. The Ru-Se and Ru-Te bond lengths have been found 2.4801(11) and 2.6183(10) Å, respectively. The palladium complexes, [PdCl2(L)] (L = L1: 1, L = L2: 2) have been explored for Heck and Suzuki-Miyaura C-C coupling reactions. The TON values are upto 95,000. The Ru-complexes have been found promising for catalytic oxidation of alcohols (TON ∼ 7.8-9.4 × 104). The complexes of telluroether ligands are as efficient catalysts as those of selenoether ones and in fact better for catalytic oxidation.  相似文献   

9.
We designed and synthesized a new pyrazoline-based turn-on fluorescence probe for Zn2+ by the reaction of chalcone and thiosemicarbazide. The structure of the probe was characterized by IR, NMR and HRMS spectroscopy. The probe (L) exhibits high selectivity and sensitivity for detecting Zn2+ in buffered EtOH/HEPES solution (EtOH/HEPES = 1/1, pH 7.2) with 80-fold fluorescence enhancement, which is superior to previous reports. Job’s plot analysis revealed 1:1 stoichiometry between probe L and Zn2+ ions. The association constant estimated by the Benesi–Hildebrand method and the detection limit were 3.92 × 103 M−1 and 5.2 × 10−7 M, respectively. A proposed binding mode was confirmed by 1H NMR titration experiments and density functional theory (DFT) calculations. The probe is cell-permeable and stable at the physiological pH range in biological systems. Because of its fast response to Zn2+, the probe can monitor Zn2+ in living cells. Moreover, the selective binding of L and Zn2+ was reversible with the addition of EDTA in buffered EtOH/HEPES solution and Zn2+ could be imaged in SH-SY5Y neuron cells.  相似文献   

10.
N,N′,N″,N′′′-1,5,8,12-tetraazadodecane-bis(salicylaldiminato)(H2L) has been used as ionophore for preparing Mn2+ selective sensor. Membranes of different composition with regard to ratio of H2L:PVC:NPOE:NaTPB have been prepared and investigated. The best performance was obtained with the membrane of composition 10:150:150:10 (H2L:PVC:NPOE:NaTPB) (w/w; mg). This membrane generated linear potential response in the concentration range of 5.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 30.0 mV/decade of activity and fast response time (10 s). Hydrogen ion does not effect to the performance of sensor in the pH range 3.0-6.5. The sensor was found to be sufficient selective for Mn2+ over a number of alkali, alkaline and heavy metal ions and could therefore be used for the determination of manganese in various samples by direct potentiometry.  相似文献   

11.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

12.
A ratiometric fluorescent probe 1 for fluoride ion was developed based on modulation of the excited-state intramolecular proton transfer (ESIPT) process of 2-(2′-hydroxyphenyl)benzimidazole (HPBI) through the hydroxyl group protection/deprotection reaction. The probe 1 was readily prepared by the reaction of HPBI with tert-butyldimethylsilyl chloride (TBS-Cl) and shows only fluorescence emission maximum at 360 nm. Upon treatment with fluoride in aqueous DMF solution, the TBS protective group of probe 1 was removed readily and ESIPT of the probe was switched on, which resulted in a decrease of the emission band at 360 nm and an increase of a new fluorescence peak around 454 nm. The fluorescent intensity ratio at 454 and 360 nm (I454/I360) increases linearly with fluoride ion concentration in the range 0.3-8.0 μmol L−1 and the detection limit is 0.19 μmol L−1. The proposed probe shows excellent selectivity toward fluoride ion over other common anions. The method has been successfully applied to the fluoride determination in toothpaste and tap water samples.  相似文献   

13.
A new colorimetric and fluorogenic probe (RN3) based on rhodamine-B has been successfully designed and synthesized. It displays a selective response to Hg2+ in the aqueous buffer solution over the other competing metals. Upon addition of Hg2+, the solution of RN3 exhibits a ‘naked eye’ observable color change from colorless to red and an intensive fluorescence with about 105-fold enhancement. The changes in the color and fluorescence are ascribed to the ring-opening of spirolactam in rhodamine fluorophore, which is induced by a binding of the constructed receptor to Hg2+ with the association and dissociation constants of 0.22 × 105 M−1 and 25.2 μM, respectively. The Job's plot experiment determines a 1:1 binding stoichiometry between RN3 and Hg2+. The resultant “turn-on” fluorescence in buffer solution, allows the application of a method to determine Hg2+ levels in the range of 4.0–15.0 μM, with the limit of detection (LOD) calculated at 60.7 nM (3σ/slope). In addition, the fluorescence ‘turn-off’ and color ‘fading-out’ happen to the mixture of RN3-Hg2+ by further addition of I or S2−. The reversible switching cycles of fluorescence intensity upon alternate additions of Hg2+ and S2− demonstrate that RN3 can perform as an INHIBIT logic gate. Furthermore, the potential of RN3 as a fluorescent probe has been demonstrated for cellular imaging.  相似文献   

14.
New rhodamine derivatives bearing urea group have been synthesized for the detection of metal ions. Especially, the dimeric system 2 displayed a selective fluorescent enhancement and colorimetric change upon the addition of Hg2+, in which the spirolactam (nonfluorescent) to ring opened amide (fluorescent) process was utilized. The association constant of 2 with Hg2+ was calculated as 3.2 × 105 M−1.  相似文献   

15.
Shi L  Song W  Li Y  Li DW  Swanick KN  Ding Z  Long YT 《Talanta》2011,84(3):900-904
A new sensing molecule 8-hydroxyquinoline ferrocenoate (Fc-Q) which combines ferrocene and 8-hydroxyquinoline moieties was synthesized and applied as a multi-channel sensor for the detection of Hg2+ ion. Fc-Q can coordinate with Hg2+ to give colorimetric, fluorescent and electrochemical responses. Upon complexation with Hg2+ ion, the characteristic absorption peak is red-shifted (Δλ = 45 nm), the fluorescent intensity is quenched at 303 nm, and the oxidation peak is cathodic shifted (ΔE1/2 = −149 mV). Quantitatively analyzed Hg2+ ions at the range of ppb level could be achieved by electrochemical response. For the practical application of sensing Hg2+ in real world water, Fc-Q modified screen-printed carbon electrodes were obtained for facile, sensitive, and on-site analysis of Hg2+.  相似文献   

16.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

17.
Two new coordination polymers of Robson-type macrocycles, [Cu2L1(μ-ClO4)2] (1) and [Cu2L2(μ-ClO4)2] (2) (where H2L1and H2L2 are the [2+2] condensation products of 2,6-diformyl-4-flurophenol with 1,3-diaminopropane and 2-hydroxy-1,3-diaminopropane, respectively), have been synthesized and characterized. The intriguing feature is that intermolecular perchlorato bridges occur between adjacent copper(II) centers. The cyclic voltammograms of the complexes show that each complex undergoes two pseudo-reversible processes with the half wave potentials, −0.361 V and −0.729 V for 1, and −0.372 V and −0.744 V for 2, respectively. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 2–300 K. The optimized magnetic data were J = −359.6 cm−1, j′ = −30 cm−1 and R = 6.8 × 10−8 for 1 and = −411 cm−1, j′ = −26 cm−1 and R = 2.4 × 10−7 for 2, respectively. The data reveal antiferromagnetic couplings between the copper(II) ions of intra- and intermolecular units.  相似文献   

18.
Carbohydrate based fluorescent sensors S1 and S2 have been developed by fluorogenic dual click chemistry and are characterized by various spectroscopic techniques. Both the fluorescent probes displayed highly selective detection of Cu2+ ions by means of fluorescence quenching. The job plot experiment suggested 1:1 complexation of probes S1 and S2 with Cu2+ ions having detection limit of 6.99 μM and 7.30 μM, respectively. The binding constants for S1-Cu2+ and S2-Cu2+ complexation were evaluated to be 3.34 × 103 M−1 and 5.93 × 103 M−1, respectively.  相似文献   

19.
New Ru(II) complexes with dicationic ligand, [Ru(phen)2L1]4+(1) and [Ru(phen)2L2]4+(2) (phen = 1,10-phenanthroline; L: L1 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation; L2 = 5,5′-di(1-(tributylammonio)methyl)-2,2′-dipyridyl cation) have been synthesized and structurally characterized. The interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated. The intrinsic binding constants (Kb: 1, 7.73 × 104 M−1; 2, 2.50 × 104 M−1) determined by absorption spectral titrations of these complexes with CT-DNA indicate the DNA-binding affinity of 1 is stronger than that of 2. Both complexes can display luminescence either alone in aqueous solution or in the presence of DNA. Equilibrium dialysis experiments monitored by CD spectroscopy reveal the preferential binding of the Δ-enantiomer to the right-handed CT-DNA. DNA-viscosity studies suggest that the binding modes are different, 1 may partially intercalate between DNA base-pairs while 2 most likely interact with DNA in an electrostatic binding mode.  相似文献   

20.
The synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes, tetra-substituted with 3,4-(methylendioxy)-phenoxy at the peripheral (complexes 3 and 5) and non-peripheral (complexes 4 and 6) positions, are reported. Complexes 3 and 4 showed Q-band absorption, in DMF, at 668 and 686 nm, respectively while Q-band due to complexes 5 and 6 appeared at 732 and 760 nm, respectively in CHCl3. All the complexes showed well resolved redox processes attributed to both metal and ring based processes. Complexes 3 and 4 showed four redox processes, labeled I, II, III and IV. For complex 3, process I (CoIPc−2/CoIPc−3) was observed at −1.45 V, II (CoIIPc−2/CoIPc−2) at −0.38 V, III (CoIIIPc−2/CoIIPc−2) at +0.49 V and IV (CoIIIPc−1/CoIIIPc−2) at +0.97 V versus Ag|AgCl. Similar processes were observed for complex 4 at −1.36 V, −0.27 V, +0.56 V, +1.03 V versus Ag|AgCl, respectively. Complexes 5 and 6 showed two redox processes (I and II). For complex 5, these processes appeared at −0.79 V (MnIIPc−2/MnIIPc−3, I) and −0.07 V versus Ag|AgCl (MnIIIPc−2/MnIIPc−2, II), while for complex 6, they were observed at −0.86 V and −0.04 V versus Ag|AgCl. Spectroelectrochemistry was used to probe and confirm the origin of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号