首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-ethylphenyl)-1-oxopropan-2-yl-4-ethyl-benzoate (BEOE) has been synthesized and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy. Its crystal structure has also been determined by X-ray single crystal diffraction. For the title compound, density functional theory (DFT) calculations of the structure and vibrational frequencies have been performed at B3LYP/6-31G* level of theory. Based on the vibration analysis, thermodynamic properties of the title compound have been calculated. The correlative equations between the thermodynamic properties and temperatures have also been listed. By using TD-DFT method, electron spectra of the title compound have been predicted, which suggests the B3LYP/6-31G* method can approximately simulate the electron spectra for the system presented here.  相似文献   

2.
The title compound, 1-acetyl-3-(2,4-dichloro-5-fluoro-phenyl)-5-phenyl-pyrazoline, has been synthesized and characterized by elemental analysis, IR, UV-vis and X-ray single crystal diffraction. Density functional (DFT) calculations have been carried out for the title compound by using B3LYP method at 6-31G* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they are supported each other. The theoretical electronic absorption spectra have been calculated by using TD-DFT method. Molecular orbital coefficients analyses suggest that the above electronic transitions are mainly assigned to n-->pi* and pi-->pi* electronic transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C(p,m)(0),S(m)(0),H(m)(0) and temperatures.  相似文献   

3.
3-(1H-Benzo[d][1,2,3]triazol-1-yl)-1-oxo-1-m-tolylpropan-2-yl-nicotinate (BOTN) has been synthesized and characterized by elemental analysis, IR, UV-vis and fluorescence spectroscopy. Its crystal structure has also been determined by X-ray single crystal diffraction. For BOTN, density functional theory (DFT) calculations of the structure and vibrational frequencies have been performed at B3LYP/6-311G** level. The comparisons between the experimental vibrational frequencies and the predicted data show that B3LYP/6-311G** method can simulate the IR of BOTN on the whole. Based on the vibration analysis, thermodynamic properties of BOTN have been calculated. The correlative equations between the thermodynamic properties and the temperatures have also been listed. The experimental UV-vis spectra present two peaks and theoretical UV-vis spectra obtained by TD-DFT method exhibit three peaks. The comparison between them suggests that the B3LYP/6-311G** method can only approximately simulate the UV-vis spectra of BOTN. The fluorescence determination reveals two emission bands at 423 and 489 nm, respectively.  相似文献   

4.
The compound 4-N-bicyclo [2.2.1] hept-2'-en-2'-amino-N-azatricyclo [3.2.1.0(2,4)] octane (2) has been synthesized and characterized by elemental analysis, IR, UV-vis, mass and NMR. Density functional theory (DFT) and Hartree-Fock (HF) calculations have been carried out for the title compound by using the standard 6-31G* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they complement each other. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT and ZINDO methods. The (13)C NMR and (1)H NMR of compound (2) have been calculated by means of Becke 3-Lee-Yang-Parr (B3LYP) density functional method with 6-31G* basis set. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated.  相似文献   

5.
Molecular structure and vibrational frequencies of 1-3-dibromo-5-chlorobenzene (DBCB) have been investigated by density functional theory (DFT) calculations using Becke's three-parameter exchange functional combined with Lee–Yang–Parr correlation (B3LYP) and standard basis set 6-31G. DFT (B3LYP/6-31G) calculations have been performed giving energies, optimized structure, harmonic vibrational frequencies, IR intensities, and Raman activities. Raman and IR spectra of the DBCB were recorded and complete assignment of the observed vibrational bands of DBCB has been proposed. The predicted first-hyperpolarizability of DBCB is 1.221 × 10−30 esu, which suggests that the title compound is an attractive object for future studies of non-linear optical properties. The impact of di-substituted halogens on the compound has also been discussed. Besides, molecular electrostatic potential (MEP), HOMO–LUMO analysis and NBO analysis were performed at DFT level of theory The UV–vis spectral analysis of DBCB has also been done which confirms the charge transfer of the title compound.  相似文献   

6.
We have carried out a structural and vibrational theoretical study for chromyl nitrate. The density functional theory has been used to study its structure and vibrational properties. The geometries were fully optimised at the B3LYP/Lanl2DZ, B3LYP/6-31G* and B3LYP/6-311++G levels of theory and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for chromyl nitrate are consistent with the experimental IR and Raman spectra in the solid and liquid phases. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by nitrate groups of this compound as monodentate and bidentate. We have also made the assignment of all the observed bands in the vibrational spectra for chromyl nitrate. The nature of the Cr-O and Cr<--O bonds in the compound were quantitatively investigated by means of Natural Bond Order (NBO) analysis. The topological properties of electronic charge density are analysed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

7.
The molecular structure and vibrational spectra of cyanuric chloride have been investigated by density functional theory (DFT) using standard B3LYP/6-31G* and B3LYP/6-311+G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. Both the calculated structural parameters and vibrational frequencies are in good agreement with the available experimental data.  相似文献   

8.
2-Chloro-N-(diethylcarbamothioyl)benzamide (C(12)H(15)ClN(2)OS) has been synthesized and characterized by elemental analysis and IR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the orthorhombic space group Pbca, Z=8 with a=9.581(3)A, b=9.992(3)A, c=26.640(8)A, V=2550.5(13)A(3) and D(calc)=1.410 Mg/m(3). The molecular geometry and vibrational frequencies of 2-chloro-N-(diethylcarbamothioyl)benzamide in the ground state have been calculated using the Hartree-Fock and density functional using Becke's three-parameter hybrid method with the Lee, Yang and Parr correlation functional (B3LYP) methods with 3-21G and 6-31G(d) basis sets. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. The raw B3LYP frequencies approximate the experimental data much better than the results of Hartree-Fock. The scaled B3LYP/6-31G(d) results were more reliable than those obtained using the B3LYP/3-21G method with the mean absolute deviation about 13.7 cm(-1). On the basis of the comparison between calculated and experimental results, assignments of fundamental vibrational modes were examined.  相似文献   

9.
FT-IR and FT-Raman spectra of (E)-N-carbamimidoyl-4-((3,4-dimethoxybenzylidene) amino) benzenesulfonamide were recorded and analyzed. The vibrational wavenumbers were computed using HF/6-31G*, B3PW91/6-31G* and B3LYP/6-31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained experimentally. The results indicate that the B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and structural parameters. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound are in agreement with that of similar derivatives.  相似文献   

10.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

11.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

12.
The title compound, O-(E)-1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl}ethyleneamino-O-ethyl-O-phenylphosphorothioate, has been synthesized via the condensation reaction of 1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl}ethanone oxime and O-ethyl-O-phenylphosphorochloridothioate in the presence of NaOH powder in refluxing EtOH. Its structure was characterized by (1)H NMR, FTIR, Raman, elemental analysis and X-ray single crystal diffraction. The results of preliminary bioassays indicated that the title compound displays good insecticidal activity. Density functional (DFT) calculations have been carried out for the title compound by using the Becke-Lee-Yang-Parr's three-parameter hybrid functional (B3LYP) method at 6-31G and 6-31G basis sets. The calculated results show that the predicted geometry can well reproduce the structural parameters. The vibrational wave numbers of the title compound were calculated at same level. Predicted vibrational frequencies have been assigned and compared with experimental IR and Raman spectra and they are supported each other.  相似文献   

13.
1N-Acetyl-3-(2,4-dichloro-5-fluoro-phenyl)-5-(p-methyl-phenyl)-2-pyrazoline has been synthesized and characterized by elemental analysis, IR, UV-Vis and X-ray single-crystal diffraction. Ab intio calculations have been carded out for the compound by using both B3LYP and HF methods at the 6-31G^* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. The electronic absorption spectra calculated by B3LYP/6-31G^* method are approximate to the experiments and the Natural Bond Orbital (NBO) analyses suggest that the above electronic transitions are mainly assigned to n→π^* and π→π^* transitions. CIS-HF/6-31G^* method is not suitable to predict the electronic spectra for the title compound. The calculation of the second order optical nonlinearity was carded out, giving the value of molecular hyperpolarizability equal to 2.194^+ 10^-30 esu. On the basis of vibrational analyses, the thermodynamic properties of the compound at different temperature have been calculated, revealing the correlation between C p, m^0, S m^0, H m^0 and temperature.  相似文献   

14.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra and atomic charges at RHF/6-31+G*, B3LYP/6-31+G* and B3LYP/6-31++G* levels for 2-mercaptobenzothiazole (MBT, C7H5NS2) and 2-mercaptobenzoxazole (MBO, C7H5NOS) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. The results show that the scaled theoretical vibrational frequencies is very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 2-mercaptobenzothiazole and 2-mercaptobenzoxazole was reported. Comparison of calculated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

15.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
1-Acetyl-3-(4-chlorophenyl)-5-(4-methylphenyl)-2-pyrazoline has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction. Density functional (DFT) calculations have been carried out for the title compound by using the B3LYP method at the 6-311G** basis set level. The calculated results show that the predicted geometry can reproduce well the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they are supported each other. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C(0)(p, m), S(0)(m), H(0)(m) and temperatures.  相似文献   

17.
A structural and vibrational theoretical study for vanadyl nitrate was carried out. The Density Functional Theory (DFT) has been used to study vibrational properties. The structures were fully optimized at the B3LYP/6‐31G*, B3LYP/6‐311G*, and B3LYP/6‐311+G* levels of theory and the harmonic vibrational frequencies were evaluated at the same level. The calculated harmonic vibrational frequencies for vanadyl nitrate are consistent with their experimental IR and Raman spectra in gas and liquid phases. Through these calculations a precise knowledge of the normal modes of vibration was obtained, considering the coordination mode adopted by the nitrate group in the mirror plane as monodentate and bidentate. A total assignment of the observed bands in the vibrational spectra for vanadyl nitrate is proposed in this work. The nature of the V–O and V ← O bonds in the compound was systematically and quantitatively investigated by means of the Natural Bond Order (NBO) analysis. The topological properties of the electronic charge density were analyzed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

18.
Sterucally congested 2,2-disubstituted indane-1,3-dione derivatives have been syn- thesized and characterized by <'1>H NMR, <'13>C NMR, FT-IR and elemental analysis.The B3LYP/HF calculations for computation of IR spectra have been carried out for the title compounds at the 6- 31G* and 6-311-m-G** basis set levels.Predicted vibrational frequencies have been assigned and compared with the experimental FT-IR spectra and they are supported each other.  相似文献   

19.
The title compound of 3-p-methylphenyl-4-amino-1, 2, 4-triazole-5-thione was synthesized and characterized by elemental analysis, IR, electronic spectra, and X-ray single crystal diffraction. Quantum chemical calculations of the structure, natural bond orbital, and thermodynamic functions of the title compound were performed by using B3LYP/6-311G** and HF-6-311G** methods. Both the methods can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, and B3LYP/6-311G** method is superior to HF/6-311G** method to predict the vibrational frequencies. Electronic absorption spectra calculated by B3LYP/6-311G** method have some red shifts compared with the experimental ones and natural bond orbitals analyses indicate that the two absorption bands are mainly derived from the contribution of n → π* and π → π* transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C 0 p,m , S 0 m , H 0 m , and temperatures.  相似文献   

20.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C12H12N2O3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title compound have been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号