首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Thymidine and uridine were modified at the C2' and C5' ribose positions to form amine analogues of the nucleosides (1 and 4). Direct amination with NaBH(OAc)3 in DCE with the appropriate aldehydes yielded 1-{5-[(bis(pyridin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L1), 1-{5-[(bis(quinolin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L2), and 1-[3-(bis(pyridin-2-ylmethyl)amino)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-pyrimidine-2,4-dione (L5), while standard coupling procedures of 1 and 4 with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (2) and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid (3) in the presence of HOBT-EDCI in DMF provided a second novel series of bifunctional chelators: 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L3), 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L4), 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L6), and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L7). The rhenium tricarbonyl complexes of L1-L4, L6, and L7, [Re(CO)3(LX)]Br (X=1-4, 6, 7: compounds 5-10, respectively), have been prepared by reacting the appropriate ligand with [NEt4][Re(CO)3Br3] in methanol. The ligands and their rhenium complexes were obtained in good yields and characterized by common spectroscopic techniques including 1D and 2D NMR, HRMS, IR, cyclic voltammetry, UV, and luminescence spectroscopy and X-ray crystallography. The crystal structure of complex 6.0.5NaPF6 displays a facial geometry of the carbonyl ligands. The nitrogen donors of the tridentate ligand complete the distorted octahedral spheres of the complex. Crystal data: monoclinic, C2, a = 24.618(3) A, b = 11.4787(11) A, c = 15.5902(15) A, beta = 112.422(4) degrees , Z = 4, D(calc) = 1.562 g/cm3.  相似文献   

2.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

3.
A series of bimetallic zinc(II) and nickel(II) complexes based on the novel dinucleating unsymmetric double-Schiff-base ligand benzoic acid [1-(3-{[2-(bispyridin-2-ylmethylamino)ethylimino]methyl}-2-hydroxy-5-methylphenyl)methylidene]hydrazide (H(2)bpampbh) has been synthesized and structurally characterized. The metal centers reside in two entirely different binding pockets provided by the ligand H(2)bpampbh, a planar tridentate [ONO] and a pentadentate [ON(4)] compartment. The utilized ligand H(2)bpampbh has been synthesized by condensation of the single-Schiff-base proligand Hbpahmb with benzoic acid hydrazide. The reaction of H(2)bpampbh with two equivalents of either zinc(II) or nickel(II) acetate yields the homobimetallic complexes [Zn(2)(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (ZnZn) and [Ni(2)(bpampbh)(mu-H(2)O)(eta(1)-OAc)(H(2)O)](OAc) (NiNi), respectively. Simultaneous presence of one equivalent zinc(II) and one equivalent nickel(II) acetate results in the directed formation of the heterobimetallic complex [NiZn(bpampbh)(mu,eta(1)-OAc)(eta(1)-OAc)] (NiZn) with a selective binding of the nickel ions in the pentadentate ligand compartment. In addition, two homobimetallic azide-bridged complexes [Ni(2)(bpampbh)(mu,eta(1)-N(3))]ClO(4) (NiNi(N(3))) and [Ni(2)(bpampbh)(mu,eta(1)-N(3))(MeOH)(2)](ClO(4))(0.5)(N(3))(0.5) (NiNi(N(3))(MeOH)(2)) were synthesized. In all complexes, the metal ions residing in the pentadentate compartment adopt a distorted octahedral coordination geometry, whereas the metal centers placed in the tridentate compartment vary in coordination number and geometry from square-planar (NiNi(N(3))) and square-pyramidal (ZnZn and NiZn), to octahedral (NiNi and NiNi(N(3))(MeOH)(2)). In the case of complex NiNi(N(3)) this leads to a mixed-spin homodinuclear nickel(II) complex. All compounds have been characterized by means of mass spectrometry as well as IR and UV/Vis spectroscopies. Magnetic susceptibility measurements show significant zero-field splitting for the nickel-containing complexes (D=2.9 for NiZn, 2.2 for NiNi(N(3)), and 0.8 cm(-1) for NiNi) and additionally a weak antiferromagnetic coupling (J=-1.4 cm(-1)) in case of NiNi. Electrochemical measurements and photometric titrations reveal a strong Lewis acidity of the metal center placed in the tridentate binding compartment towards external donor molecules. A significant superoxide dismutase reactivity against superoxide radicals was found for complex NiNi.  相似文献   

4.
Tsai ML  Hsieh CH  Liaw WF 《Inorganic chemistry》2007,46(12):5110-5117
Addition of the Lewis base [OPh]- to the THF solution of Roussin's red ester [Fe(mu-SC6H4-o-NHCOPh)(NO)2]2 (1) and [Fe(mu-SC6H4-o-COOH)(NO)2]2 (2), respectively, yielded the EPR-active, anionic {Fe(NO)2}9, [(SC6H4-o-NCOPh)Fe(NO)2]- (3) with the anionic [SC6H4-o-NCOPh]2- ligand bound to the {Fe(NO)2} core in a bidentate manner (S,N-bonded) and [(SC6H4-o-COO)Fe(NO)2]- (4) with the anionic [SC6H4-o-COO]2- ligand bound to the {Fe(NO)2} core in a bidentate manner (S,O-bonded), characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. In contrast to the bridged-thiolate cleavage yielding the neutral {Fe(NO)2}9, [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (Im=imidazole), by addition of 2 equiv of imidazole to complex 1 observed in the previous study, the addition of the stronger sigma-donating and pi-accepting PPh3 ligand triggered the reductive elimination of bridged thiolates of complex 1 to yield the neutral {Fe(NO)2}10, [(PPh3)2Fe(NO)2]. These results unambiguously illustrate one aspect of how the nucleophile L (L=imidazole, PPh3, [OPh]-) functions to control the reaction pathways (bridged-thiolate cleavage, reductive elimination, and deprotonation) upon the reaction of complex 1 and the nucleophile L. The EPR-active, dimeric {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(mu-SC7H4SN)(NO)2]2 (6), with S and N atoms of the anionic [-SC7H4SN-]- (2-benzothiozolyl thiolate) ligands bound to two separate {Fe(NO)2}9 cores, was also synthesized from reaction of bis(2-benzothiozolyl) disulfide and [(NO)2Fe(PPh3)2]. A straightforward reaction of complex 6 and 4 equiv of [N3]- conducted in THF led to the anionic {Fe(NO)2}9, [(N3)2Fe(NO)2]- (7). Conclusively, the EPR-active, {Fe(NO)2}9 DNICs can be classified into the anionic {Fe(NO)2}9 DNICs with S/N/O ligation, the neutral {Fe(NO)2}9 DNIC with one thiolate and one neutral imidazole ligation, and the cationic {Fe(NO)2}9 DNICs with the neutral N-/P-containing coordinated ligands.  相似文献   

5.
The N,P,N-type ligands bis(2-picolyl)phenylphosphine (), bis(4,5-dihydro-2-oxazolylmethyl)phenylphosphine (), bis(4,4-dimethyl-2-oxazolylmethyl)phenylphosphine () and bis(2-picolyloxy)phenylphosphine () were used to synthesize the corresponding pentacoordinated Ni(ii) complexes [Ni{bis(2-picolyl)phenylphosphine}Cl(2)] (), [Ni{bis(4,5-dihydro-2-oxazolylmethyl)phenylphosphine}Cl(2)] (), [Ni{bis(4,4-dimethyl-2-oxazolylmethyl)phenylphosphine}Cl(2)] () and [Ni{bis(2-picolyloxy)phenylphosphine}Cl(2)] (), respectively. The hexacoordinated iron complexes [Fe{bis(2-picolyl)phenylphosphine}(2)][Cl(3)FeOFeCl(3)] (), [Fe{bis(4,5-dihydro-2-oxazolylmethyl)phenylphosphine}(2)][Cl(3)FeOFeCl(3)] () and the tetracoordinated complex [Fe{bis(4,4-dimethyl-2-oxazolylmethyl)phenylphosphine}Cl(2)] (abbreviated [FeCl(2)(NPN(Me2)-N,N)]) were prepared by reaction of FeCl(2).4H(2)O with ligands , respectively. The crystal structures of the octahedral complexes and , determined by X-ray diffraction, showed that two tridentate ligands are facially coordinated to the metal centre with a cis-arrangement of the P atoms and the dianion (mu-oxo)bis[trichloroferrate(iii)] compensates the doubly positive charge of the complex. The cyclic voltammograms of and showed two reversible redox couples attributed to the reduction of the dianion (Fe(2)OCl(6))(2-) (-0.24 V for and -0.20 V for vs. SCE) and to the oxidation of the Fe(ii) ion of the complex (0.67 V for and 0.52 V for vs. SCE). The cyclic voltammogram of [FeCl(2)(NPN(Me2)-N,N)] showed a reversible redox couple at -0.17 V vs. SCE assigned to the oxidation of the Fe(ii) atom and an irreversible process at 0.65 V. The complexes , and [FeCl(2)(NPN(Me2)-N,N)] have been evaluated in the catalytic oligomerization of ethylene with AlEtCl(2) or MAO as cocatalyst. The nickel complex proved to be the most active precatalyst in the series, with a turnover frequency (TOF) of 61 800 mol(C(2)H(4)) mol(Ni)(-1) h(-1) with 10 equiv. of AlEtCl(2) and 12 200 mol(C(2)H(4)) mol(Ni)(-1) h(-1) with 200 equiv. of MAO. Precatalysts and were the most selective in butenes, up to 90% with 6 equiv. of AlEtCl(2) and 89% with 2 equiv. of AlEtCl(2), respectively, and up to 92% butenes with 400 equiv. of MAO and 91% butenes with 200 equiv. MAO, respectively. The best selectivities for 1-butene were provided by and AlEtCl(2) (up to 31% with 6 equiv.) and with MAO (up to 72% with 200 equiv.). The iron complexes were not significantly active with AlEtCl(2) or MAO as cocatalyst.  相似文献   

6.
The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the -carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl3 provided in low yield a single C–N condensation product 1 (at the primary terminal NH2) after the pyridyl –CH2– is formally oxidised to –CH+–. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C–N condensation products without the requirement for oxidation at the -C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl4, 5, and unsym-fac-[Co(dienbpc)Cl]ZnCl4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH) were coordinated, was obtained via the Co(II)/O2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.  相似文献   

7.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

8.
The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}{(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by (1)H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response.  相似文献   

9.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

10.
Four tripodal ligands with an N(3)O coordination sphere were synthesized: (2-hydroxy-3-tert-butyl-5-nitrobenzyl)bis(2-pyridylmethyl)amine (LNO(2)H), (2-hydroxy-3-tert-butyl-5- fluorobenzyl)bis(2-pyridylmethyl)amine (LFH), (2-hydroxy-3,5-di-tert-butylbenzyl)bis(2-pyridylmethyl)amine (LtBuH) and (2-hydroxy-3-tert-butyl-5-methoxybenzyl)bis(2-pyridylmethyl)amine (LOMeH). Their square-pyramidal copper(II) complexes, in which the phenol subunit occupies an axial position, were prepared and characterized by X-ray crystallography and UV/Vis and EPR spectroscopy. The phenolate moieties of the copper(II) complexes of LtBuH and LOMeH were electrochemically oxidized to phenoxyl radicals. These complexes are EPR-active (S=1), highly stable (k(decay)=0.008 min(-1) for [Cu(II)(LOMe(.))(CH(3)CN)](2+)) and stoichiometrically oxidise benzyl alcohol. Two additional tripodal ligands providing an N(2)O(2) coordination sphere were also studied: (2-pyridylmethyl)(2-hydroxy-3-tert-butyl-5-methoxybenzyl)(2-hydroxy-3-tert-butyl-5-nitrobenzyl)amine (L'OMeNO(2)H(2)) and (2-pyridylmethyl)bis(2-hydroxy-3-tert-butyl-5- methoxy)benzylamine (L'OMe(2)H(2)). Their copper(II) complexes were isolated as dimers ([Cu(2II)(L'OMe(2))(2)], [Cu(2II)(L'OMeNO(2))(2)]) that are converted to monomers on addition of pyridine. The complexes were investigated by X-ray crystallography and UV/Vis and EPR spectroscopy. Their one-electron electrochemical oxidation leads to copper(II)-phenoxyl systems that are less stable than those of the N(3)O complexes. The N(2)O(2) complexes are more reactive than the N(3)O analogues: they aerobically oxidize benzyl alcohol to benzaldehyde at a higher rate, as well as ethanol to acetaldehyde (40-80 turnovers).  相似文献   

11.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

12.
Tridentate ligands derived from benzimidazole, quinoline, and tryptophan have been synthesized, and their reactions with [NEt4]2[Re(CO)3Br3] have been investigated. The complexes 1-4 and 6 and 7 exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular units, while 5 exhibits fac-{Re(CO)3N2O} coordination for the neutral molecular unit, where N3 and N2O refer to the ligand donor groups. The ligands bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amine (L1), [bis(1-methyl-1H-benzoimidazol-2-ylmethyl)amino]acetic acid ethyl ester (L2), [bis(1-methyl-1H-benzoimidazol-2-ylmethy)amino]acetic acid methyl ester (L3), [bis(quinolin-2-ylmethyl)amino]acetic acid methyl ester (L4), 3-(1-methyl-1H-indol-3-yl)-2-[(pyridin-2-ylmethyl)amino]propionic acid (L5), 2-[bis(pyridin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L6), and 2-[bis(quinolin-2-ylmethyl)amino]-3-(1-methyl-1H-indol-3-yl)propionic acid (L7) were obtained in good yields and characterized by elemental analysis, 1D and 2D NMR, and high-resolution mass spectrometry (HRMS). The rhenium complexes were obtained in 70-85% yields and characterized by elemental analysis, 1D and 2D NMR, HRMS, IR, UV, and luminescence spectroscopy, as well as X-ray crystallography for [Re(CO)3(L1)]Br (1), {[Re(CO)3(L2)]Br}2.NEt4Br . 8.5H2O (3(2).NEt4Br . 8.5H2O), [Re(CO)3(L4)]Br (4), and [Re(CO)3(L6)]Br (6). Crystal data for C21H19BrN5O3Re (1): monoclinic, P2(1)/c, a = 13.1851(5) A, b = 16.1292(7) A, c = 10.2689(4) A, beta = 99.353(1) degrees , V = 2154.8(2) A3, Z = 4. Crystal data for C56H73Br3N11O18.50 Re2 (3(2).NEt4Br . 8.5H2O): monoclinic, C2/c, a = 34.7760(19) A, b = 21.1711(12) A, c = 20.3376(11) A, beta = 115.944(1) degrees , V = 13464.5(1) A3, Z = 8. Crystal data for C26H21BrN3O5Re (4): monoclinic, P2(1)/c, a = 16.6504(6) A, b = 10.1564(4) A, c = 14.6954(5) A, beta = 96.739(1) degrees , V = 2467.9(2) A3, Z = 4. Crystal data for C27H24BrN4O5Re (6): monoclinic, P2(1), a = 8.7791(9) A, b = 16.312(2) A, c = 8.9231(9) A, beta = 90.030(1) degrees , V = 1277.8(2) A3, Z = 2.  相似文献   

13.
The potentially tridentate P‐stereogenic [P*CP*] ligands 1,3‐{bis[(tert‐butyl)(phenyl)phosphino]methyl}benzene and 1,3‐{bis[(tert‐butyl)(phenyl) phosphino]methyl}‐2‐bromobenzene have been synthesized as the protected phosphine‐borane adducts. Deprotection with a secondary amine affords the free phosphine ligand which can be metallated by Pd and Pt with standard metal synthons. Two of the resultant [P*CP*] metal complexes have been characterized by X‐ray crystallography. The complexes exhibit a C2 symmetric environment about the remaining binding site of the square‐planar center, with t‐Bu groups filling two quadrants of the open site. The Pd complexes can be converted by use of a Ag salt to the analogous aquo complex, which is catalytically active in the aldol condensation of methyl 2‐isocyanoacetate and benzaldehyde. Preliminary results and comparisons with previously reported catalysts with more distal C‐stereogenicity are presented.  相似文献   

14.
A series of nicotyl-fused indolo-pyrazoles (NFIPs) were synthesized by a one-pot multicomponent reaction of aryl aldehydes, isoniazid, and indole in the presence of zeolite as a catalyst. Structures of all the synthesized compounds were established by IR, 1H-NMR, 13C-NMR, 2D-NMR, TOF-MS, and elemental analysis. The products were obtained in excellent yields and high purity. All 10 compounds were screened for larvicidal and insecticidal properties against Anopheles arabiensis and tested for their lipoxygenase inhibitory activity. Compounds (3-(3-hydroxy-4-methoxyphenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4i ) and (3-(3-bromo-5-hydroxy-4-methoxyphenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4j) displayed highest larvae mortality at a 4 μg/ml dose in 24 h. Compounds (3-(4-methoxyphenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4h ) and (3-(3-hydroxy-4-methoxyphenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4i ) showed a significant knockdown activity after 24 h with 70% mortality. Furthermore, (3-(4-chlorophenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4c ) and (3-(3-bromo-5-hydroxy-4-methoxyphenyl)-2,3-dihydropyrazolo[4,3-b]indol-1(4H)-yl)(pyridin-4-yl)methanone ( 4j ) displayed promising lipoxygenase inhibitory activity with a mortality of 70% and 60%, respectively.  相似文献   

15.
Four oxovanadium(V) complexes of heterocycle based ditopic ligands PyPzOAP (N-[amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PyPzOAPz (N-[amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PymPzOAP (N-[amino(pyridin-2-yl)methylidene]-1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-1H-pyrazole-3-carbohydrazonic acid) and PyPzCAP (5-methyl-1-(pyridin-2-yl)-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) and a binuclear (di-μ-oxo) oxovanadium(V) complex of the ligand PymPzCAP (1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) have been investigated. The ligands act as uninegative NNO tridentates donors for the VO2+ ion exhibiting their monotopicity. The ligands show varying emission properties due to the presence of fluophoric groups like 1-(2-pyridyl)pyrazole or 1-(2-pyrimidyl)pyrazole. The vanadium(V) complexes show fluorescence quenching with respect to the used ligands to a varying extent. The complexes were characterized by UV-Vis, IR, cyclic voltammetry and X-ray crystallography.  相似文献   

16.
The coupling between tetramethylguanidine, HN=C(NMe2)2, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl2(RCN)2] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl2{NH=C(R)N=C(NMe2)2}2] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metal-mediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and 1H and 13C{1H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their Z right harpoon over left harpoon E isomerization in solution were performed using 2D 1H,1H-COSY, 1H,13C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe2)2 were liberated from the platinum(II) complexes [PtCl2{NH=C(R)N=C(NMe2)2}2] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe2)2 species (5-7) in solution and the solid [Pt(dppe)2](Cl)2. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl3 to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe2. The formulation of 8-10 is based on ESI-MS, 1H, 13C{1H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.  相似文献   

17.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

18.
The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.  相似文献   

19.
A new metal-organic framework, {Zn[Zn3(BTA)3(μ3-OH)(H2O)3]2}n 1, has been synthesized under hydrothermal reaction of ZnCl2 and bis(5-tetrazolyl)amine (H2BTA), and characterized by elemental analysis, FT-IR, Raman spectrum, X-ray single-crystal diffraction, TGA and photoluminescence measurements. Compound 1 crystallizes in the trigonal system, space group P-3cl, a = 13.667(3), c = 12.981(3) A, V = 2099.6(8) A3 and Z = 2. The BTA2- ligand in 1 assumes theμ3 tetradentate mode with both 1,2- and 1,4-tetrazole bridges, generating an unusual 2-D layer, in which the [Zn3(μ3-OH)] triangular motifs act as three-connecting nodes and the mononuclear Zn atoms as six-connecting nodes that are inter-linked by organic ligands. Adjacent 2-D metal-organic layers are linked by strong hydrogen bonds to form a novel 3-D supramolecular framework. Complex 1 exhibits blue fluorescence emission in the solid state at ambient temperature.  相似文献   

20.
Azo coupling of diazonium salts derived from alkyl (4-aminophenyl)carbamates with ethyl α-methylacetoacetate gave ethyl 5-alkoxycarbonylamino-1H-indole-2-carboxylates. The condensation of aminophenylcarbamates with aromatic aldehydes in ethanol afforded the corresponding Schiff bases. Cyclohexyl {4-[(4-methoxyphenyl)methylidene]aminophenyl}carbamate reacted with chloroacetyl chloride in dioxane in the presence of triethylamine to produce cyclohexyl {4-[3-chloro-2-(4-methoxyphenyl)-4-oxoazetidin-1-yl]phenylcarbamate, and the reaction of benzyl {4-[(4-nitrophenyl)methylidene]aminophenyl}carbamate with sulfanylacetic acid in DMF led to the formation of benzyl {4-[2-(4-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]-phenyl}carbamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号