首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inservice program designed to enhance the knowledge and skills of elementary school teachers with respect to science content, effective teaching strategies, and gender equity was implemented as a semester-long course. During the course, teachers explored new science content in chemistry and physics and then collaboratively developed lesson plans from it based on hands-on, discovery-centered learning, enmeshed in strategies that could maximize female student interest and participation in science. Teachers tried out their lessons between course sessions in their own classrooms and then collaboratively reflected on their progress and problems in subsequent sessions. Program results were positive for both teachers and students. Teachers reported significant increases in both their level of knowledge of and their confidence in teaching chemistry and physics concepts, as well as in their knowledge of strategies for addressing gender inequities. Project students' attitudes, particularly those of the girls, improved for some dimensions, remained stable for others, and declined for one; the girls also increased their level of active participation in science activities. Overall, the project seems to have had a positive impact on science teaching content and pedagogy, and on student (especially girls') interest and active participation in science.  相似文献   

2.
The purpose of the present explanatory mixed‐method design is to examine the effectiveness of a developmental intervention, Embedded Metacognitive Prompts based on Nature of Science (EMPNOS) to teach the nature of science using metacognitive prompts embedded in an inquiry unit. Eighty‐three (N = 83) eighth‐grade students from four classrooms were randomly assigned to an experimental and a comparison group. All participants were asked to respond to a number of tests (content and nature of science knowledge) and surveys (metacognition and self‐regulatory efficacy). Participants were also interviewed. It was hypothesized that the experimental group would outperform the comparison group in all measures. Partial support for the hypotheses was found. Specifically, results showed significant gains in content knowledge and nature of science knowledge of the experimental group over the comparison group. Qualitative findings revealed that students in the comparison group reported scientific thinking in similar terms as the scientific method, while the experimental group reported that scientists were creative and had to explain events using evidence, which is more closely aligned to the aspects of the nature of science. EMPNOS may have implications as a useful classroom tool in guiding students to check their thinking for alignment to the nature of science.  相似文献   

3.
Student initiatives play an important role in inquiry‐based science with all students, including English language learning (ELL) students. This study examined initiatives that elementary students made as they participated in an intervention to promote science learning and English language development over a three‐year period. In addition, the study examined whether student initiatives were related to other domains of classroom practices. The study involved 70 third‐, fourth‐, and fifth‐grade classrooms with ELL students in six urban elementary schools. Results indicated that students generally made few, low‐quality initiatives. Student initiatives were generally not related to the other domains of classroom practices for grades 3 and 4, whereas initiatives were significantly related to almost all the other domains for grade 5. These results contribute to the knowledge base for fostering ELL students' initiatives in science classrooms.  相似文献   

4.
Substantial recent focus has been placed upon the competitiveness of American students in increasingly global economies and entrepreneurial enterprises. As concerns center on students’ educational preparedness and their efforts at continued learning, researchers acknowledge the importance of student engagement with school. In order to foster engaged learners, teachers must be able to determine and monitor their students’ levels of engagement. The current study examined the alignment of perceptions of engagement by students, teachers, and outside observers across middle and high school mathematics and science classrooms. Results indicated significant teacher‐student differences in perceptions of student cognitive engagement across mathematics and science classrooms with teachers consistently perceiving higher levels than students. Moreover, most effect sizes were moderate to large. A subsequent multi‐level analysis indicated that while teacher perceptions of student cognitive engagement were somewhat predictive of student reported cognitive engagement, academic engagement ratings by outside observers were not.  相似文献   

5.
This article examines the process of shifting to a “Physics First” sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the past few decades. Using qualitative case study methodology, the present study focuses on the lessons learned in three school districts that successfully rearranged their course offerings and made physics a ninth‐grade subject for all of its students. Findings show that in all districts, the shift was undertaken to support student learning in mathematics and in future science learning. In every case, the coordination between ninth grade physics and ninth‐grade algebra was much more difficult than expected. Also, during most transitions, the number of students taking biology dropped precipitously for a period of 1–2 years. Though there is shared agreement about Physics First as the realignment of the high school curricular sequence, there is less consensus about how such programs ought to be aligned with mathematics curricula. The article concludes with suggestions for sources of evidence in conducting effectiveness studies on the Physics First approach.  相似文献   

6.
Within the field of science education, there remains little agreement as to the definition and characteristics of classroom inquiry. The emerging emphasis on scientific practices in science education reform discourse is underpinned by a need to better articulate the constituent elements of inquiry‐based science. While a small number of observation‐based instruments have been developed to characterize science learning environments, few are explicitly aligned with theoretical constructs articulated by the National Research Council and/or have been substantially field‐tested. We employ a newly developed instrument, the Practices of Science Observation Protocol (P‐SOP), to investigate essential features of inquiry and scientific practices in which early learners engage in elementary classrooms. This research is part of a multiyear professional development program designed to support elementary teachers (K‐5) in a large, urban school district to learn to better engage students in scientific practices. Project teachers video‐recorded enacted science lessons (n = 124) which were used as data. Findings illustrate both essential features of inquiry and scientific practices observed in elementary classrooms, as well as establish the P‐SOP as a valid and reliable observation protocol. These findings have important implications for the design of elementary science learning environments and associated research and development efforts in the field.  相似文献   

7.
The present research study investigates how undergraduate students in an integrated calculus and physics class use physics to help them solve calculus problems. Using Zandieh's (2000) framework for analyzing student understanding of derivative as a starting point, this study adds detail to her “paradigmatic physical” context and begins to address the need for a theoretical basis for investigating learning and teaching in integrated mathematics and science classrooms. A case study design was used to investigate the different ways students use physics ideas as they worked through calculus tasks. Data were gathered through four individual interviews with each of 8 ICP students, classroom participant‐observation, and triangulation of the data through student homework and exams. The main result of this study is the Physics Use Classification Scheme, a tool consisting of four categories used to characterize students' uses of physics on tasks involving average rate of change, derivative, and integral concepts. Two of the categories from the Physics Use Classification Scheme are elucidated with contrasting student cases in this paper.  相似文献   

8.
Commissions, studies, and reports continue to call for inquiry‐based learning approaches in science and math that challenge students to think critically and deeply. While working with a group of middle school science and math teachers, we conducted more than 100 classroom observations, assessing several attributes of inquiry‐based instruction. We sorted the observations into two groups based on whether students both explored underlying concepts before receiving explanations and contributed to the explanations. We found that in both math and science classrooms, when teachers had students both explore concepts before explanations and contribute to the explanations, a higher percent of time was spent on exploration and students were more frequently involved at a higher cognitive level. Further, we found a high positive correlation between the percent of time spent exploring concepts and the cognitive level of the students, and a negative correlation between the percent of time spent explaining concepts and the cognitive level. When we better understand how teachers who are successful in challenging students in higher‐order thinking spend their time relative to various components of inquiry‐based instruction, then we are better able to develop professional development experiences that help teachers transition to more desired instructional patterns.  相似文献   

9.
The purpose of this study was to compare teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the statewide End‐of‐Instruction (EOI) Biology I test met or exceeded the state academic proficiency level (Proficient Group) to teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the EOI Biology I test fell below the state academic proficiency level (Non‐proficient Group). The mean difference on the Personal Science Teaching Efficacy (PSTE) subscale scores between the two groups was not statistically significant. This indicates that personal science teaching efficacy was not statistically related to how a teacher s students scored on the EOI Biology I test. The mean difference on the Science Teaching Outcome Expectancy (STOE) subscale scores demonstrated a statistically significant difference between the science teaching outcome expectancy of the Non‐proficient Group and Proficient Group teachers. Proficient Group teachers had significantly higher STOE scores than teachers Non‐proficient Group teachers. This finding suggests that End‐of‐Instruction Biology I test scores were related to the expectations that a teacher held for his/her students to learn biology regardless of student home environment, availability of classroom materials, or student motivation.  相似文献   

10.
Much has been made in recent years of inquiry approaches to science education and the promise of such instruction to alleviate some of the ills of science education, yet in some ways this construct is still unclear to many in the field. In this paper we explore one view of inquiry in science that is based on the development, use, assessment, and revision of models and related explanations. Because modeling plays a central role in scientific inquiry it should be a prominent feature of students’ science education. We present a framework based on this view that can serve as a guide to curriculum development and instructional decision‐making with the goal of creating classroom environments that mirror important aspects of scientific practice. Specifically, the framework allows us to emphasize that scientists: engage in inquiry other than controlled experiments, use existing models in their inquiries, engage in inquiry that leads to revised models, use models to construct explanations, use models to unify their understanding, and engage in argumentation. Here, we discuss how these practices can be incorporated into science classrooms and illustrate that discussion with examples from our research classrooms.  相似文献   

11.
The purpose of this article is to focus on the development and refinement of a science instructional design program arguing for the feasibility and usability of integrated reading and science instruction as implemented in third‐ and fourth‐grade science classrooms to meet the learning needs of diverse learners. These instructional components are easily inserted into existing programs that build students' science background knowledge and abilities to apply learning through scaffolded activities focused on (1) providing structured opportunities for students to engage in hands‐on activities; (2) increasing vocabulary knowledge and understanding of concept‐laden terms, and (3) reading paired narrative and informational science texts. Extensive research shows that as students transition from third to fourth grade and beyond, they are often challenged in science by new vocabulary coupled with new concepts. Active ingredients of our reconceptualized science instructional design program are narrative informational texts, hands‐on science activities, and science textbook(s).  相似文献   

12.
This article reports on “MaterialSim”, an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as opposed to only interacting with ready-made simulations; (c) the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to computational materials science, and (d) the principles which govern the design of computational agent-based learning environments in general and for materials science in particular. Data sources for the evaluation of these studies include classroom observations, interviews with students, videotaped sessions of model-building, questionnaires, and analysis of artifacts. Results suggest that by becoming ‘model builders,’ students develop deeper understanding of core concepts in materials science, and learn how to better identify unifying principles and behaviors within the content matter.  相似文献   

13.
Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the following research question: What pedagogical factors, and related teacher conceptions, are potentially related to the demonstration of creativity among science students? Seventeen middle‐level, high school, and introductory‐level college science teachers from a variety of school contexts participated in the study. A questionnaire developed for this study, interviews, and classroom observations were used in order to explore potential areas of relatedness between pedagogical factors and manifestations of student creativity in science. Five categories ultimately emerged and described potential areas in which teachers would have to explicitly plan for creativity. These areas could inform the pedagogical considerations that teachers would have to make within their lesson plans and activities in order to support its manifestation among students. These provide a starting point for science teachers and science teacher educators to consider how to develop supportive environments for student creative thinking.  相似文献   

14.
Inclusion is the meaningful participation of students with disabilities in general education classrooms. The CLASS project (Creating Laboratory Access for Science Students) is a unique initiative offering training and resources to help educators provide students with a variety of physical, sensory and learning disabilities equal access in the science laboratory or field. To determine whether participants believed a 2‐week residential workshop sponsored by CLASS raised disability awareness and provided teacher training in inclusive science teaching practice, a multipoint Likert scale survey and questionnaire was completed by all participants (N= 20) in four workshops. Participants reported large gains in their preparedness to teach science to students with disabilities. Participants also reported gains in their familiarity with instructional strategies, curricula, and resources and their ability to design, select, and modify activities for students with disabilities. Finally, shifts in attitudes about teaching science to students with disabilities were noted.  相似文献   

15.
Findings from physics education research strongly point to the critical need for teachers’ use of multiple representations in their instructional practices such as pictures, diagrams, written explanations, and mathematical expressions to enhance students' problem‐solving ability. In this study, we explored use of problem‐solving tasks for generating multiple representations as a scaffolding strategy in a high school modeling physics class. Through problem‐solving cognitive interviews with students, we investigated how a group of students responded to the tasks and how their use of such strategies affected their problem‐solving performance and use of representations as compared to students who did not receive explicit, scaffolded guidance to generate representations in solving similar problems. Aggregated data on students' problem‐solving performance and use of representations were collected from a set of 14 mechanics problems and triangulated with cognitive interviews. A higher percentage of students from the scaffolding group constructed visual representations in their problem‐solving solutions, while their use of other representations and problem‐solving performance did not differ with that of the comparison group. In addition, interviews revealed that students did not think that writing down physics concepts was necessary despite being encouraged to do so as a support strategy.  相似文献   

16.
State and national initiatives attempt to increase the quantity and quality of secondary mathematics and science teachers. Research suggests that if one could appeal to something inside of people or about the process of teaching and learning itself, then one might draw current mathematics and science graduate students into secondary teaching. This study placed eight mathematics and science graduate students in secondary schools for ten hours a week. Pre‐ and post‐measures of their interest level in becoming secondary teachers were made. Overall, graduate students decreased in their desire to become secondary teachers. The main reasons were (1) fellows wanted to work with higher‐level mathematics and science; (2) fellows felt students were not behaved and unmotivated; (3) fellows did not view being a teacher as a career, but only as a job; and (4) fellows felt school systems had to do too many things that fellows did not want to do.  相似文献   

17.
This study represents a first iteration in the design process of the Growing Awareness Inventory (GAIn), a structured observation protocol for building the awareness of preservice teachers (PSTs) for resources in mathematics and science classrooms that can be used for culturally responsive pedagogy (CRP). The GAIn is designed to develop awareness of: how students use language in classrooms; relationships between teacher questioning patterns and student participation; messages conveyed by the classroom environment; and ways to incorporate students’ interests into lesson plans. The methodology took the form of a multiple case study design with fourteen mathematics PSTs as one case and five science PSTs as the other case. The participants' response to the GAIn and lesson plans served as data sources. Findings reveal that the GAIn scaffolded PSTs’ awareness of their students, their own attitudes, and several elements of CRP. However, there were key areas of CRP that were neither explored with the GAIn nor identified by the participants. Consistent with design‐based research, outcomes include a design framework for revision of the GAIn and a theory of action that situates it within a teacher education course that includes a field placement.  相似文献   

18.
This report describes an evaluation project that aimed to assess the potential of two elementary science specialists, as compared to elementary classroom teachers, to realize the reforms vision for science instruction in elementary classrooms. Participant science specialist background, views of elementary science teaching, and planning and assessment practices were compared to those of regular elementary classroom teachers in the specialist district, as well as in a comparable district not employing specialists. Specialists' views and practices were better aligned with those envisioned by current national reform documents in science education. Despite the constraints imposed by the nature of a program evaluation, the present report provides evidence to suggest that students taught by the science specialists (a) were engaged in open‐ended, inquiry‐oriented, science‐based activities of the kind often advocated, but mostly absent, in elementary school, and (b) demonstrated problem solving and higher order and critical thinking skills. This report is the first to provide empirical support for the advocated “effectiveness” of elementary science specialists in achieving the visions espoused by current reform efforts.  相似文献   

19.
The National Science Foundation has funded 22 Collaboratives for Excellence in Teacher Preparation. Despite the remarkable allocation of resources to this effort, it has proven exceptionally difficult to demonstrate the effectiveness of collaborative reform. In large part, this has resulted because of the difficulty of defining and measuring reform. The Reformed Teaching Observation Protocol (RTOP) was designed by the Evaluation Facilitation Group of the Arizona Collaborative for Excellence in the Preparation of Teachers (ACEPT). It is a 25‐item classroom observation protocol that is (a) standards based, (b) inquiry oriented, and (c) student centered. This instrument has provided the definition for reform and the basis for evaluation of the ACEPT collaborative. The data upon which this report is based were collected over a period of more than 2 years from 153 public school, college, and university mathematics and science classrooms. A trained team of observers consisting of two faculty members and seven graduate students was able to achieve exceptionally high levels of interrater reliability. Internal consistency, as estimated by Cronbach's alpha, was also remarkably high. Correlation coefficients ranging from 0.88 to 0.97 between RTOP scores for classrooms, and mean normalized gain scores for students in those classrooms on achievement measures demonstrate that reform, as defined by ACEPT and measured by the RTOP, has been effective.  相似文献   

20.
本文以湖南师范大学物理学专业数学物理方程的教学实践为基础,指出了目前理工科数学课程教学中存在的主要问题,探讨了高等院校数学教学与专业特色相结合的教学方法,并从教学内容、师资要求、教学方法和考核方式等方面提出某些具体改革措施,在教学实践中取得了初步成效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号