首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The influence of the –NH2 group position in the pyridine ring on the proton donor ability of N–H groups in hydrogen bonding as well as on the spectral behaviour of stretching and bending vibrations of aminopyridines has been studied. The proton donor ability was shown to increase in the row: meta-, ortho-, and para-aminopyridines. It was established tha N–H bonds in ortho-aminopyridine were not equivalent, and the evaluation of their dynamic nonequivalence was made.

The influence of temperature on the spectral characteristics of the absorption bands of the stretching vibrations of amine groups in the free and hydrogen bonded molecules in CCl4 has been studied (in temperature range 290–330 K), the formation constants of the complexes have been determined, enthalpy of the 1:1 complexes formation (−ΔH1) between ortho- and meta-aminopyridines with dimethylformamide, dimethylsulphoxide and hexamethylphosphoramide has been calculated in temperature range 290–330 K. The 1:2 complexes of ortho-, meta- and para-aminopyridines with acetonitrile, tetrahydrofurane, dimethylsulphoxide, hexamethylphosphoramide were studied at the indoor temperature. Enthalpy of the 1:2 complex (−ΔH2) was estimated on the basis of ‘intensity rule’; −ΔH1B1/2 assuming that parameter does not depend on the composition of a complex.

The vibrational and electrooptical tasks were solved for the free and H-bounded molecules of aminopyridines as well as its complexes of the 1:1 and 1:2 compositions. Dynamic, electrooptical and energetic nonequivalency of NH bonds of aminogroups in aminopyridines was studied quantitatively. The independent calculations of dynamic constants proved mentioned above nonequivalency of NH bonds.

Correlations between spectral characteristics of the absorption bands, geometric, dynamic and electrooptical parameters of –NH2 group in aminopyridines in the free and hydrogen bonded molecules have been established. Those correlations allow to determine the most important molecular characteristics obtained on the basis of spectral measurements in the range of the absorption bands of the stretching vibrations of aminogroup.  相似文献   


2.
The synthesis of cis-1,2,3-trichlorocyclopropane is reported. The infrared spectra have been recorded between 4000 and 400 cm−1 in the polycrystalline solid phase, and between 4000 and 200 cm−1 in the gas phase. The spectrum of a solution in carbon disulphide was measured from 1400 to 400 cm−1. The Raman spectrum has been obtained between 4000 and 100 cm−1 in the solid phase. An assignment of the fundamentals of the title compound is proposed and compared with similar molecules. The spectrum unequivocally proves the CJV structure of the molecule.  相似文献   

3.
FT-IR and FT-Raman spectra of the biomolecule 5-aminouracil were recorded in the regions 400–4000 cm−1 and 10–3500 cm−1, respectively. The observed vibrational wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. Density functional calculations were performed to support wavenumber assignments of the observed bands. A comparison with the molecule of uracil was made, and specific scale factors were employed in the predicted wavenumbers of 5-aminouracil. With the purpose of study the important molecule 5-aminouracil, its equilibrium geometry and harmonic wavenumbers were calculated for the first time by the B3LYP DFT method. The vibrational wavenumbers were compared with IR and Raman experimental data. Also good reproduction of the experimental wavenumbers is obtained and the % error is very small. All the tautomeric forms of 5-aminouracil were determined and optimized. The dimer forms were also simulated. The energy, atomic charges and dipole moments were discussed and several general conclusions were underlined.  相似文献   

4.
Raman and FTIR spectra for 2,3,4- and 2,3,6-tri-fluoro-benzonitriles have been recorded in the regions 50–4000 cm−1 and 400–4000 cm−1, respectively. Measurement of depolarization ratios for the Raman lines has also been made. Optimized geometrical parameters, charge distributions and vibrational wavenumbers were calculated using ab initio quantum chemical method. Normal coordinate analysis has also been carried out to help assign the fundamentals of these molecules. Each vibration has been assigned using observed wavenumbers in the IR and Raman spectra and their relative intensities, depolarization ratios of the Raman lines, the calculated frequencies, vector displacements and potential energy distributions (PEDs).  相似文献   

5.
The complexes trans-[Os(CCPh)Cl(dppe)2] (1), trans-[Os(4-CCC6H4CCPh)Cl(dppe)2] (2), and 1,3,5-{trans-[OsCl(dppe)2(4-CCC6H4CC)]}3C6H3 (3) have been prepared. Cyclic voltammetric studies reveal a quasi-reversible oxidation process for each complex at 0.36–0.39 V (with respect to the ferrocene/ferrocenium couple at 0.56 V), assigned to the OsII/III couple. In situ oxidation of 1–3 using an optically transparent thin-layer electrochemical (OTTLE) cell affords the UV–Vis–NIR spectra of the corresponding cationic complexes 1+–3+; a low-energy band is observed in the near-IR region (11 000–14 000 cm−1) in each case, in contrast to the neutral complexes 1–3 which are optically transparent below 20 000 cm−1. Density functional theory calculations on the model compounds trans-[Os(CCPh)Cl(PH3)4] and trans-[Os(4-CCC6H4CCPh)Cl(PH3)4] have been used to rationalize the observed optical spectra and suggest that the low-energy bands in the spectra of the cationic complexes can be assigned to transitions involving orbitals delocalized over the metal, chloro and alkynyl ligands. These intense bands have potential utility in switching nonlinear optical response, of interest in optical technology.  相似文献   

6.
The reaction of RuII(PPh3)3X2 (X = Cl, Br) with o-(OH)C6H4C(H)=N-CH2C6H5 (HL) under aerobic conditions affords RuII(L)2(PPh3)2, 1, in which both the ligands (L) are bound to the metal center at the phenolic oxygen (deprotonated) and azomethine nitrogen and RuIII(L1)(L2)(PPh3), 2, in which one L is in bidentate N,O form like in complex 1 and the other ligand is in tridentate C,N,O mode where cyclometallation takes place from the ortho carbon atom (deprotonated) of the benzyl amine fragment. The complex 1 is unstable in solution, and undergoes spontaneous oxidative internal transformation to complex 2. In solid state upon heating, 1 initially converts to 2 quantitatively and further heating causes the rearrangement of complex 2 to the stable RuL3 complex. The presence of symmetry in the diamagnetic, electrically neutral complex 1 is confirmed by 1H and 31P NMR spectroscopy. It exhibits an RuII → L, MLCT transition at 460 nm and a ligand based transition at 340 nm. The complex 1 undergoes quasi-reversible ruthenium(II)—ruthenium(III) oxidation at 1.27V vs. SCE. The one-electron paramagnetic cyclometallated ruthenium(III) complex 2 displays an L → RuIII, LMCT transition at 658 nm. The ligand based transition is observed to take place at 343 nm. The complex 2 shows reversible ruthenium(III)—ruthenium(IV) oxidation at 0.875V and irreversible ruthenium(III)—ruthenium(II) reduction at −0.68V vs. SCE. It exhibits a rhombic EPR spectrum, that has been analysed to furnish values of axial (6560 cm−1) and rhombic (5630 cm−1) distortion parameters as well as the energies of the two expected ligand field transitions (3877 cm−1 and 9540 cm−1) within the t2 shell. One of the transitions has been experimentally observed in the predicted region (9090 cm−1). The first order rate constants at different temperatures and the activation parameter ΔH#S# values of the conversion process of 1 → 2 have been determined spectrophotometrically in chloroform solution.  相似文献   

7.
p-Nitrophenyl- and p-tolyl-oxadithia- and trithiastibocanes have been synthesized from the respective aryldichlorostibane and dithiole. The compounds have been characterised by means of 13C NMR and vibrational spectra (ν(SBS2) 350–320 cm−1). The crystal structure of p-nitrophenyltrithiastibocane has been determined (R = 0.042). The eight-membered ring exhibits a boat-chair conformation. Single-bond distances of Sb---C and Sb---S (219, 244 and 245 pm), a 1,5-transannular SbS interaction (319 pm), and SbS and SbO (339 and 353 pm) intermolecular contacts, result in a six-coordinated SbIII (ψ-monocapped octahedral) species. The two additional SbS distances are in accordance with the vibrational (SbS) bands at 236 and 218 cm−1. A logarithmic correlation between the transannular distances and the respective vibrations are discussed for a series of related trithiastibocanes.  相似文献   

8.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

9.
We have recorded the infrared absorption spectrum of pyrrole at 0.005 cm−1 spectral resolution using a Fourier transform interferometer. The rotational analysis of the fundamental N---H stretch (110) at 3530.811343(82) cm−1 was performed. A set of 13 upper state rovibrational parameters was determined, allowing the 2715 assigned rovibrational lines to be reproduced with a standard deviation of 1.3 10−3 cm−1. An attempt to record the fundamental band under slit-jet conditions is reported. The role of hot bands accompanying the series of the N---H stretch excitation is investigated. Effective vibrational parameters — ω01, X011, Y111, X1,24 — are obtained. The lower level in the hot band series is unambiguously identified as the V24 = 1 level, by retrieving X1,24 independently, from other spectral data. The observation of the complex band pattern accompanying the N---H series in the higher overtone range is discussed with the help of new data, recorded around the 150 band at different temperatures using intracavity laser optoacoustic spectroscopy.  相似文献   

10.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

11.
Toma HE  Sernaglia RL 《Talanta》1995,42(12):1867-1874
The electrochemical and spectroelectrochemical behavior of the binuclear and trinuclear complexes generated from the association of cis- or trans-[Ru(NH3)4(pz)2]3+/2+ (where pz represents pyrazine) and [RuEDTA(H2O)]2−/− complexes has been investigated in aqueous solution. Based on two sets of spectrophotometrically determined equilibrium constants and on the formal redox potentials, the complex network of equilibrium reactions involving mixed valence species has been elucidated.  相似文献   

12.
The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.  相似文献   

13.
The vibrational characteristics of deuterated acetonitrile dissolved in isopropanol, dimethyl formamide (DMF), and dimethyl sulfoxide (DMSO) have been studied. Observed vibrational bands show substantial frequency shifts, the amounts of which vary almost linearly with concentration. The absorption feature in the region of 2220–2280 cm−1 was deconvoluted to the consisting absorption bands. The band at 2258 cm−1 of pure CD3CN, which is on the low frequency side of the monomer CN stretch (ν2), is attributed to the CN stretch of the dimer (ν′2). The shoulder found on the further low frequency side of the ν2 band, particularly in dilute solution, is believed to be due to ν5, and its frequency and intensity vary largely as a function of concentration along with those of other vibrational bands involved with the CD3 group. The ν5 band of pure CD3CN is believed to be active and located at about 2251 cm−1. Ab initio calculations have also been performed for the solute–solvent complexes, CD3CN–DMF and CD3CN–DMSO, at the MP2/6-31+G(2d,p) level assuming anti-parallel configurations. The calculated results show a good agreement with the observed results.  相似文献   

14.
Laser-induced fluorescence spectra of jet-cooled chlorotoluene molecules are reported for the S1 state. The fluorescence excitation spectrum of m-chlorotoluene shows some low-frequency bands up to 200 cm−1 above the S1 origin, which are assigned to internal rotational modes of the methyl group. Beyond 300 cm−1 and up to approximately 1500 cm−1 sharp vibrational bands are observed, which are assigned by measurement of the dispersed fluorescence spectrum on excitation of each vibrational band. The vibrational energies of the C---Cl stretching modes for the o-, m- and p-chlorotoluene molecules are 341, 378 and 360 cm−1 respectively in the S1 state.  相似文献   

15.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

16.
The vibrational spectrum of Sb4O6 in the gas phase has been measured at 1000 K by high-temperature infrared spectroscopy. The four infrared-active absorption bands were observed at ν7 = 785.0 cm1, ν8 = 176.2 cm−1, ν9 = 292.4 cm−1 and ν10 = 415.6 cm−1. By combining these results with data on the molecular geometry and the infrared-inactive modes, as reported in the literature, the thermodynamic functions of Sb4O6 have been calculated.  相似文献   

17.
We have combined the high sensitivity of the ICLAS technique with the rotational cooling effect of a slit jet expansion in order to observe and to understand the visible and near infrared NO2 spectrum. By this way, an equivalent absorption pathlength of several kilometers through rotationally cooled molecules has been achieved. Due to the vibronic interaction between the two lowest electronic states, 2A1 and à 2B2, this spectrum is vibronically dense and complex. Moreover, the dense room temperature rotational structure is perturbed by additional rovibronic interactions. In contrast, the rotational analysis of our jet cooled spectrum is straightforward. The NO2 absorption spectrum is vanishing to the IR but, owing to the high sensitivity of the ICLAS technique, we have been able to record the NO2 spectrum down to 11200 cm−1 with a new Ti:sapphire ICLAS spectrometer. As a result 249 2B2 vibronic bands have been observed (175 cold bands and 74 hot bands) in the 11200–16150 cm−1 energy range. Due to the cooling effect of the slit jet we have reduced the rotational temperature down to about 12 K and at this temperature the K = 0 subbands are dominant. Consequently, we have analysed only the K = 0 manifold for N 7 of each vibronic band. The dynamical range of the band intensities is about one thousand. Due to the strong vibronic interaction between the 2A1 and à 2B2 electronic states, we observed not only the a1 vibrational levels of the à 2B2 state but also the b2 vibrational levels of the 2A1 state interacting with the previous ones. By comparison with the calculated density of states, we conclude that we have observed about 65% of the total number of 2B2 vibronic levels located in the studied range. However, there are more missing levels in the IR because of the weakness of the spectrum in this range. The correlation properties of this set of vibronic levels have been analysed calculating the power spectrum of the absorption stick spectrum which displays periodic motions: the dominant period, at 714 ± 20 cm−1, corresponds to the bending motion of the à 2B2 state. The other observed periods remain unassigned. In contrast the next neighbor spacing distribution (NNSD) shows a strong level repulsion, i.e. a manifestation of quantum chaos. These two observations, apparently contradictory, can be rationalized as follows: the short time dynamics, for t < 10−12 s, is “regular” while for longer times the dynamics becomes “chaotic”. We suggest that this behavior may be observed directly with a pump and probe fs laser experiment.  相似文献   

18.
The kinetic parameters were determined for C-trifluoromethylation of aniline with S-(trifluoromethyl)dibenzothiophenium triflate (1), its 3,7-dinitro derivative (2) and S-(trifluoromethyl)diphenylsulfonium triflate (3) in DMF-d7. The higher reactivity of heterocyclic 1 compared with non-heterocyclic 3 could be explained on the basis of its greatly enhanced activation entropy (ΔS: −11.2 cal mol −1 K−1 for 1; −47.1 for 3), but not its enhanced activation enthalpy (ΔH: 21.2 kcal mol−1 for 1; 12.1 for 3). The aromatic delocalization of the heterocyclic ring may thus be only slightly disturbed by the S-trifluoromethyl substituent. The high reactivity of 2 was attributed to the great electron deficiency caused by two nitro groups in addition to the heterocyclic salt system (ΔH 17.0 kcal mol−1, ΔS −9.1 cal mol−1 K−1 for 2). The reaction mechanism is discussed; the conventional SN2 attack mechanism was ruled out and a mechanism for a side-on attack to the CF3-S bond may possibly be applicable.  相似文献   

19.
This work reports the thermal dehydration of the oxocarbonic salt Li2C5O5·2H2O studied by IR and Raman spectroscopy, by ex situ and in situ techniques. The loss of the crystallization water is not only reflected by the disappearing of the pertinent bands, but also by the change in the crystalline phase, as evidenced by the alteration in the splitting pattern of the oxocarbon modes and by differential scanning calorimetry. In the anhydrous salt spectra, a great number of overtones and combination bands appear in the 2000–4000 cm−1 region, indicating an increased anharmonicity. The enhanced splitting suggests that the anhydrous phase belongs to a less symmetric unit cell. The tetrahedral environment around the lithium ion is preserved, as suggested by the shifts of some modes in the 300–600 cm−1 region on isotopic substitution from 7Li to 6Li. Raman and thermoanalytical data seem to indicate that the crystallization water is released in a single-step process.  相似文献   

20.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号