首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

2.
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.  相似文献   

3.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

4.
5.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

6.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm, using either 36 or 60 optical passes corresponding to total path lengths of 3.25 or 5.25 m, respectively, has been used to study the bimolecular reactions, OH+CF3H-->CF3+H2O (1) and CF3+H2O-->OH+CF3H (-1), between 995 and 1663 K. During the course of the study, estimates of rate constants for CF3+OH-->products (2) could also be determined. Experiments on reaction -1 were transformed through equilibrium constants to k1, giving the Arrhenius expression k1=(9.7+/-2.1)x10(-12) exp(-4398+/-275K/T) cm3 molecule(-1) s(-1). Over the temperature range, 1318-1663 K, the results for reaction 2 were constant at k2=(1.5+/-0.4)x10(-11) cm3 molecule(-1) s(-1). Reactions 1 and -1 were also studied with variational transition state theory (VTST) employing QCISD(T) properties for the transition state. These a priori VTST predictions were in good agreement with the present experimental results but were too low at the lower temperatures of earlier experiments, suggesting that either the barrier height was overestimated by about 1.3 kcal/mol or that the effect of tunneling was greatly underestimated. The present experimental results have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range of 252-1663 K. The three parameter expression k1=2.08x10(-17) T1.5513 exp(-1848 K/T) cm3 molecule(-1) s(-1) describes the rate behavior over this temperature range. Alternatively, the expression k1,th=1.78x10(-23) T3.406 exp(-837 K/T) cm3 molecule(-1) s(-1) obtained from empirically adjusted VTST calculations over the 250-2250 K range agrees with the experimental evaluation to within a factor of 1.6. Reaction 2 was also studied with direct CASPT2 variable reaction coordinate transition state theory. The resulting predictions for the capture rate are found to be in good agreement with the mean of the experimental results and can be represented by the expression k2,th=2.42x10(-11) T-0.0650 exp(134 K/T) cm3 molecule(-1) s(-1) over the 200-2500 K temperature range. The products of this reaction are predicted to be CF2O+HF.  相似文献   

7.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.  相似文献   

8.
Rate coefficients, k1(T), over the temperature range of 210-390 K are reported for the gas-phase reaction OH + HC(O)C(O)H (glyoxal) --> products at pressures between 45 and 300 Torr (He, N2). Rate coefficients were determined under pseudo-first-order conditions in OH using pulsed laser photolysis production of OH radicals coupled with OH detection by laser-induced fluorescence. The rate coefficients obtained were independent of pressure and bath gas. The room-temperature rate coefficient, k1(296 K), was determined to be (9.15 +/- 0.8) x 10-12 cm3 molecule-1 s-1. k1(T) shows a negative temperature dependence with a slight deviation from Arrhenius behavior that is reproduced over the temperature range included in this study by k1(T) = [(6.6 +/- 0.6) x 10-18]T2[exp([820 +/- 30]/T)] cm3 molecule-1 s-1. For atmospheric modeling purposes, a fit to an Arrhenius expression over the temperature range included in this study that is most relevant to the atmosphere, 210-296 K, yields k1(T) = (2.8 +/- 0.7) x 10-12 exp[(340 +/- 50)/T] cm3 molecule-1 s-1 and reproduces the rate coefficient data very well. The quoted uncertainties in k1(T) are at the 95% confidence level (2sigma) and include estimated systematic errors. Comparison of the present results with the single previous determination of k1(296 K) and a discussion of the reaction mechanism and non-Arrhenius temperature dependence are presented.  相似文献   

9.
10.
The rate coefficients for the reactions OH + ClOOCl --> HOCl + ClOO (eq 5) and OH + Cl2O --> HOCl + ClO (eq 6) were measured using a fast flow reactor coupled with molecular beam quadrupole mass spectrometry. OH was detected using resonance fluorescence at 309 nm. The measured Arrhenius expressions for these reactions are k5 = (6.0 +/- 3.5) x 10(-13) exp((670 +/- 230)/T) cm(3) molecule(-1) s(-1) and k6 = (5.1 +/- 1.5) x 10(-12) exp((100 +/- 92)/T) cm(3) molecule(-1) s(-1), respectively, where the uncertainties are reported at the 2sigma level. Investigation of the OH + ClOOCl potential energy surface using high level ab initio calculations indicates that the reaction occurs via a chlorine abstraction from ClOOCl by the OH radical. The lowest energy pathway is calculated to proceed through a weak ClOOCl-OH prereactive complex that is bound by 2.6 kcal mol(-1) and leads to ClOO and HOCl products. The transition state to product formation is calculated to be 0.59 kcal mol(-1) above the reactant energy level. Inclusion of the OH + ClOOCl rate data into an atmospheric model indicates that this reaction contributes more than 15% to ClOOCl loss during twilight conditions in the Arctic stratosphere. Reducing the rate of ClOOCl photolysis, as indicated by a recent re-examination of the ClOOCl UV absorption spectrum, increases the contribution of the OH + ClOOCl reaction to polar stratospheric loss of ClOOCl.  相似文献   

11.
The laser flash photolysis resonance fluorescence technique was used to monitor atomic Cl kinetics. Loss of Cl following photolysis of CCl4 and NaCl was used to determine k(Cl + C6H6) = 6.4 x 10(-12) exp(-18.1 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 578-922 K and k(Cl + C6D6) = 6.2 x 10(-12) exp(-22.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 635-922 K. Inclusion of literature data at room temperature leads to a recommendation of k(Cl + C6H6) = 6.1 x 10(-11) exp(-31.6 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) for 296-922 K. Monitoring growth of Cl during the reaction of phenyl with HCl led to k(C6H5 + HCl) = 1.14 x 10(-12) exp(+5.2 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 294-748 K, k(C6H5 + DCl) = 7.7 x 10(-13) exp(+4.9 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 292-546 K, an approximate k(C6H5 + C6H5I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) over 300-750 K, and an upper limit k(Cl + C6H5I) < or = 5.3 x 10(-12) exp(+2.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 300-750 K. Confidence limits are discussed in the text. Third-law analysis of the equilibrium constant yields the bond dissociation enthalpy D(298)(C6H5-H) = 472.1 +/- 2.5 kJ mol(-1) and thus the enthalpy of formation Delta(f)H(298)(C6H5) = 337.0 +/- 2.5 kJ mol(-1).  相似文献   

12.
The atmospheric chemistry of (CF3)2CHOCH3, a possible HCFC/HFC alternative, was studied using a smog chamber/FT-IR technique. OH radicals were prepared by the photolysis of ozone in a 200-Torr H2O/O3/O2 gas mixture held in an 11.5-dm3 temperature-controlled chamber. The rate constant, k1, for the reaction of (CF3)2CHOCH3 with OH radicals was determined to be (1.40 +/- 0.28) x 10(-12) exp[(-550 +/- 60)/T] cm3 molecule(-1) s(-1) by means of a relative rate method at 253-328 K. The value of k1 at 298 K was (2.25 +/- 0.04) x 10(-13) cm3 molecule(-1) s(-1). The random errors are reported with +/-2 standard deviations, and potential systematic errors of 15% could increase k(1). In considering OH-radical reactions, we estimated the tropospheric lifetime of (CF3)2CHOCH3 to be 2.0 months using the rate constant at 288 K. The degradation mechanism of (CF3)2CHOCH3 initiated by OH radicals was also investigated using FT-IR spectroscopy at 298 K. Products (CF3)2CHOC(O)H, CF3C(OH)2CF3, CF3C(O)OCH3, and COF(2) were identified and quantified. The branching ratio, k1a/k1b, was estimated to be 2.1:1 for reactions (CF3)2CHOCH3 + OH --> (CF3)2CHOCH2*+ H2O (k1a) and (CF3)2CHOCH3 + OH --> (CF3)2C*OCH3 + H2O (k1b).  相似文献   

13.
Rate coefficients of the reaction O(3P)+C2H5OH in the temperature range 782-1410 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO2 at 193 nm with an ArF excimer laser; their concentrations were monitored via atomic resonance absorption. Our data in the range 886-1410 K are new. Combined with previous measurements at low temperature, rate coefficients determined for the temperature range 297-1410 K are represented by the following equation: k(T)=(2.89+/-0.09)x10(-16)T1.62 exp[-(1210+/-90)/T] cm3 molecule(-1) s(-1); listed errors represent one standard deviation in fitting. Theoretical calculations at the CCSD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(3df) level predict potential energies of various reaction paths. Rate coefficients are predicted with the canonical variational transition state (CVT) theory with the small curvature tunneling correction (SCT) method. Reaction paths associated with trans and gauche conformations are both identified. Predicted total rate coefficients, 1.60 x 10(-22)T3.50 exp(16/T) cm3 molecule(-1) s(-1) for the range 300-3000 K, agree satisfactorily with experimental observations. The branching ratios of three accessible reaction channels forming CH3CHOH+OH (1a), CH2CH2OH+OH (1b), and CH3CH2O+OH (1c) are predicted to vary distinctively with temperature. Below 500 K, reaction 1a is the predominant path; the branching ratios of reactions 1b,c become approximately 40% and approximately 11%, respectively, at 2000 K.  相似文献   

14.
The reflected shock tube technique with multipass absorption spectrometric detection (at a total path length of approximately 1.75 m) of OH-radicals at 308 nm has been used to study the dissociation of CF3-radicals [CF3 + Kr --> CF2 + F + Kr (a)] between 1,803 and 2,204 K at three pressures between approximately 230 and 680 Torr. The OH-radical concentration buildup resulted from the fast reaction F + H2O --> OH + HF (b). Hence, OH is a marker for F-atoms. To extract rate constants for reaction (a), the [OH] profiles were modeled with a chemical mechanism. The initial rise in [OH] was mostly sensitive to reactions (a) and (b), but the long time values were additionally affected by CF2 + OH --> CF2O + H (c). Over the experimental temperature range, rate constants for (a) and (c) were determined from the mechanistic fits to be kCF3+Kr = 4.61 x 10-9 exp(-30,020 K/T) and kCF2+OH = (1.6 +/- 0.6) x 10-10, both in units of cm3 molecule-1 s-1. Reaction (a), its reverse recombination reaction reaction (-a), and reaction (c) are also studied theoretically. Reactions (c) and (-a) are studied with direct CASPT2 variable reaction coordinate transition state theory. A master equation analysis for reaction (a) incorporating the ab initio determined reactive flux for reaction (-a) suggests that this reaction is close to but not quite in the low-pressure limit for the pressures studied experimentally. In contrast, reaction (c) is predicted to be in the high-pressure limit due to the high exothermicity of the products. A comparison with past and present experimental results demonstrates good agreement between the theoretical predictions and the present data for both (a) and (c).  相似文献   

15.
The temperature dependence of the rate constant of the chemiluminescence reaction C2H + O2 --> CH(A) + CO2, k1e, has been experimentally determined over the temperature range 316-837 K using pulsed laser photolysis techniques. The rate constant was found to have a pronounced positive temperature dependence given by k1e(T) = AT(4.4) exp(1150 +/- 150/T), where A = 1 x 10(-27) cm(3) s(-1). The preexponential factor for k1e, A, which is known only to within an order of magnitude, is based on a revised expression for the rate constant for the C2H + O(3P) --> CH(A) + CO reaction, k2b, of (1.0 +/- 0.5) x 10(-11) exp(-230 K/T) cm3 s(-1) [Devriendt, K.; Van Look, H.; Ceursters, B.; Peeters, J. Chem. Phys. Lett. 1996, 261, 450] and a k2b/k1e determination of this work of 1200 +/- 500 at 295 K. Using the temperature dependence of the rate constant k1e(T)/k1e(300 K), which is much more accurately and precisely determined than is A, we predict an increase in k(1e) of a factor 60 +/- 16 between 300 and 1500 K. The ratio of rate constants k2b/k1e is predicted to change from 1200 +/- 500 at 295 K to 40 +/- 25 at 1500 K. These results suggest that the reaction C2H + O2 --> CH(A) + CO2 contributes significantly to CH(A-->X) chemiluminescence in hot flames and especially under fuel-lean conditions where it probably dominates the reaction C2H + O(3P) --> CH(A) + CO.  相似文献   

16.
The kinetics of the OH + HCNO reaction was studied. The total rate constant was measured by LIF detection of OH using two different OH precursors, both of which gave identical results. We obtain k = (2.69 +/- 0.41) x 10(-12) exp[(750.2 +/- 49.8)/T] cm(3) molecule(-1) s(-1) over the temperature range 298-386 K, with a value of k = (3.39 +/- 0.3) x 10(-11) cm(3) molecule(-1) s(-1) at 296 K. CO, H(2)CO, NO, and HNO products were detected using infrared laser absorption spectroscopy. On the basis of these measurements, we conclude that CO + H(2)NO and HNO + HCO are the major product channels, with a minor contribution from H(2)CO + NO.  相似文献   

17.
The thermal decomposition of acetaldehyde, CH3CHO + M --> CH3 + HCO + M (eq 1), and the reaction CH3CHO + H --> products (eq 6) have been studied behind reflected shock waves with argon as the bath gas and using H-atom resonance absorption spectrometry as the detection technique. To suppress consecutive bimolecular reactions, the initial concentrations were kept low (approximately 10(13) cm(-3)). Reaction was investigated at temperatures ranging from 1250 to 1650 K at pressures between 1 and 5 bar. The rate coefficients were determined from the initial slope of the hydrogen profile via k1 = [CH3CHO]0(-1) x d[H]/dt, and the temperature dependences observed can be expressed by the following Arrhenius equations: k1(T, 1.4 bar) = 2.9 x 10(14) exp(-38 120 K/T) s(-1), k1(T, 2.9 bar) = 2.8 x 10(14) exp(-37 170 K/T) s(-1), and k1(T, 4.5 bar) = 1.1 x 10(14) exp(-35 150 K/T) s(-1). Reaction was studied with C2H5I as the H-atom precursor under pseudo-first-order conditions with respect to CH3CHO in the temperature range 1040-1240 K at a pressure of 1.4 bar. For the temperature dependence of the rate coefficient the following Arrhenius equation was obtained: k6(T) = 2.6 x 10(-10) exp(-3470 K/T) cm(3) s(-1). Combining our results with low-temperature data published by other authors, we recommend the following expression for the temperature range 300-2000 K: k6(T) = 6.6 x 10(-18) (T/K) (2.15) exp(-800 K/T) cm(3) s(-1). The uncertainties of the rate coefficients k1 and k6 were estimated to be +/-30%.  相似文献   

18.
Absolute rate data and product branching ratios for the reactions Cl + HO2 --> HCl + O2 (k1a) and Cl + HO2 --> OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10(-11) exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10(-11) exp[(123 +/- 15)/T] cm3 molecule(-1) s(-1), respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10(-11) exp[-(708 +/- 29)/T] cm3 molecule(-1) s(-1). These expressions for k1a and k1b are valid for 226 K < or = T < or = 336 and 256 K < or = T < or = 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K < or = T < or = 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K < or = T < or = 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10(-11) exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10(-11) exp[-(733 +/- 41)/T] cm3 molecule(-1) s(-1), respectively. These expressions for k1a and k1b are valid for 256 K < or = T < or = 296 and 226 K < or = T < or = 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10(-11) exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10(-11) exp[-(801 +/- 94)/T] cm3 molecule(-1) s(-1), respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 --> OH for detection purposes.  相似文献   

19.
The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.  相似文献   

20.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号