首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface polyion complex gel (sPIC gel), which possesses chemically bonded nonionic gel moiety, was designed using N‐vinylacetamide (NVA), N‐vinylforamide (NVF), and vinyl phosphonic acid (VPA). Taking advantage of the property of NVF as vinylamine (VAm) precursor, the cationic moiety was introduced only onto the surface of poly(NVA‐co‐NVF), producing surface hydrolyzed poly(NVA‐co‐NVF‐co‐VAm), and the successive polymerization of VPA inside the gel successfully produced sPIC gel. The swelling ratio of the sPIC gel was investigated under various pH conditions, and compared with that of the fully polyion complex gel (PIC gel), using totally hydrolyzed poly(NVA‐co‐VAm). The swelling ratio of sPIC gel ranged between 14 and 25, while that of the PIC gel ranged between 2 and 5. The anionic compound, AR, showed a sustained release from sPIC gel at pH 2, due to the electrostatic interactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 562–566  相似文献   

2.
The differences in the polymerization abilities of N‐vinylformamide (NVF) and N‐vinylisobutyramide (NVIBA) and the synthesis of their copolymers were studied. The polymerization abilities were fairly good and quite similar to those of N‐vinyl‐ acetamide (NVA), a monomer in the same class as N‐vinylalkylamides. Since the monomer reactivity ratios were r1 = 1.08 and r2 = 0.92 (M1 = NVF, M2 = NVIBA), respectively, it is clear that the comonomers definitely were converted to random copolymers. The resulting copolymers poly(NVF‐co‐NVIBA) exhibited the cloud points sharply. The light transmittance profiles were the same as those for poly(NVIBA) although they increased from 39 °C for poly(NVIBA), with an increase in the corresponding hydrophilic NVF component. Our final objective was to produce a cloud point controlled polymer material with primary amino groups. To achieve this, we examined the hydrolysis of poly(NVF), poly(NVA), poly(NVIBA), and poly(NVF‐co‐NVIBA) to obtain poly(vinylamine) [poly(VAm)]. The hydrolytic cleavage of poly(NVF) and poly(NVA) was promoted by an increase in temperature. However, poly(NVIBA) was not cleaved appreciably. The hydrolysis of poly(NVF‐co‐NVIBA) was done under controlled conditions, and amino groups selectively were introduced to only one of two components of the copolymer. The cloud point of the hydrolyzed copolymer shifted to a higher temperature than that of the copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3674–3681, 2000  相似文献   

3.
The radical polymerization of N‐(p‐vinylbenzyl)‐N‐vinylacetamide ( 1 ) prepared by the reaction of N‐vinylacetamide with p‐chloromethylstyrene was carried out by using radical initiators such as AIBN or BPO in benzene, chlorobenzene, or bulk. As a result, poly 1 was successfully isolated by dialysis (yield, 10–36%). The crosslinking reaction of poly 1 was carried out at 60–100 °C for 8 h. By using a radical initiator such as AIBN or BPO (3 mol %), the crosslinking reaction proceeded (yield, 63–79%). Moreover, the crosslinking reaction of poly 1 proceeded at 100 °C without a radical initiator in 50% yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2714–2723, 2006  相似文献   

4.
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP.  相似文献   

5.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

6.
An unsymmetrical and noncoplanar heterocyclic dianhydride was synthesized from a bisphenol‐like phthalazinone, 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, and a series of novel poly(ether imide)s based on it, with intrinsic viscosities of 0.67–1.42 dL/g, were obtained by one‐step solution polymerization in m‐cresol at 200 °C for 20 h. The polymers were readily soluble in N‐methyl‐2‐pyrrolidinone and m‐cresol. The poly(ether imide)s derived from 4,4′‐oxydianiline and 4,4′‐methylenedianiline were also very soluble in chloroform, 1,1′,2,2′‐tetrachloroethane, and N,N‐dimethylacetamide. The glass‐transition temperatures were 289–326 °C, as determined by differential scanning calorimetry. All the degradation temperatures for 5% weight loss occurred above 482 °C in nitrogen. The tensile strength of thin films of some of the polymers varied from 103.1 to 121.4 MPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6089–6097, 2004  相似文献   

7.
Summary: A low‐molar‐mass poly(acrylic acid) with a narrow molar‐mass distribution, prepared by SG1 nitroxide‐mediated controlled free‐radical polymerization, was subjected to end‐group analysis to confirm its living nature. 1H and 31P NMR spectroscopy confirmed the presence of the SG1‐based alkoxyamine end group. Furthermore, chain extension with styrene and n‐butyl acrylate demonstrated the ability of the homopolymer to initiate the polymerization of a second block. These results open the door to the synthesis of poly(acrylic acid)‐based block copolymers by direct nitroxide‐mediated polymerization of acrylic acid.

Acrylic acid polymerization using an alkoxyamine initiator based on SG1 (N‐tert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl) nitroxide resulting in a homopolymer capable of initiating the polymerization of a second block.  相似文献   


8.
Summary: The bis‐hydrophilic block copolymer, poly(acrylic acid)45block‐poly(N,N‐diethylacrylamide)360, was obtained after hydrolysis of poly(tert‐butyl acrylate)45block‐poly(N,N‐diethylacrylamide)360, synthesized by sequential anionic polymerization of tert‐butyl acrylate (tBA) and N,N‐diethylacrylamide (DEAAm) in the presence of Et3Al. The polymer is stimuli‐sensitive with respect to both pH and temperature in aqueous solution, reversibly forming spherical crew‐cut micelles with PDEAAm‐core (〈Rhz = 21.5 nm) under alkaline conditions for T > 35 °C as well as inverse star‐like micelles with an expanded PAA‐core (〈Rhz = 43.8 nm) under acidic conditions for T < 35 °C, as indicated by dynamic light scattering.

Modes of micelle formation for poly(acrylic acid)45block‐poly(N,N‐diethylacrylamide)360 in aqueous solution depending on the pH and temperature.  相似文献   


9.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

10.
A rhodium‐based multicomponent catalytic system for well‐controlled living polymerization of phenylacetylenes has been developed. The catalytic system is composed of readily available and bench‐stable [Rh(nbd)Cl]2, aryl boronic acid derivatives, diphenylacetylene, 50 % aqueous KOH, and PPh3. This system offers a method for the facile and versatile synthesis of various end‐functionalized cis‐stereoregular poly(phenylacetylene)s because components from aryl boronic acids and diphenylacetylene were introduced to the initiating end of the polymers. The polymerization reaction shows a typical living nature with a high initiation efficiency, and the molecular weight of the resulting poly(phenylacetylene)s can be readily controlled with very narrow molecular‐weight distributions (Mw/Mn=1.02–1.09). The experimental results suggest that the present catalytic system has a higher polymerization activity than the polymerization activities of other rhodium‐based catalytic systems previously reported.  相似文献   

11.
A series of novel N‐substituted‐N‐vinylformamides were synthesized, and the effect of bulky substituents on their radical polymerizability and polymer structure were investigated. N‐(p‐Methoxybenzyl)‐N‐vinylformamide ( 3 ) and N‐cyclohexylmethyl‐N‐vinylformamide ( 4 ) generated polymers, while it was known that their N‐vinylacetamide derivatives did not. 1H NMR and 13C NMR analyses of poly( 3 ), however, revealed almost no difference among the various polymerization conditions, implying that the substituent bulkiness did not influence the polymer structures. On the other hand, the chiral polymers, which were obtained by the radical polymerization of N‐(S)‐2‐methylbutyl‐N‐vinylformamide ((S)‐ 5 ) and N‐(S)‐2,3‐dihydroxypropyl‐N‐vinylformamide ((S)‐ 7 ) at 0 °C, showed sharper spectral patterns than those obtained at higher polymerization temperatures. Furthermore, the intensities of their positive cotton effects on circular dichroism increased when the polymerization temperature was low, suggesting that the substituent bulkiness of (S)‐ 5 and (S)‐ 7 influenced the polymer structures, such as their stereoregularity and regioregularity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

13.
Highly syndiotactic “living” poly(propylene)s were synthesized at 25°C using a bis[N‐(3‐tert‐butylsalicylidene)‐2,3,4,5,6‐pentafluoroanilinato]titanium (IV) dichloride/MAO catalyst system, and microstructures of the polymer were analyzed by means of 13C NMR spectroscopy. The syndiotactic poly(propylene) contains isobutyl, isopentyl and propyl end groups, suggesting that the living polymerization of propylene was initiated via 1,2‐insertion, followed by 2,1‐insertion as the principal mode of polymerization. Pentad distribution analysis revealed that the syndiospecific polymerization proceeds under chain‐end control.  相似文献   

14.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

15.
Polyisobutylene‐b‐poly(N,N‐diethylacrylamide) (PIB‐b‐PDEAAm) well‐defined amphiphilic diblock copolymers were synthesized by sequential living carbocationic polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The hydrophobic polyisobutylene segment was first built by living carbocationic polymerization of isobutylene at ?70 ° C followed by multistep transformations to give a well‐defined (Mw/Mn = 1.22) macromolecular chain transfer agent, PIB‐CTA. The hydrophilic poly(N,N‐diethylacrylamide) block was constructed by PIB‐CTA mediated RAFT polymerization of N,N‐diethylacrylamide at 60 ° C to afford the desired well‐defined PIB‐b‐PDEAAm diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.26). Fluorescence spectroscopy, transmission electron microscope, and dynamic light scattering (DLS) were employed to investigate the self‐assembly behavior of PIB‐b‐PDEAAm amphiphilic diblock copolymers in aqueous media. These diblock copolymers also exhibited thermo‐responsive phase behavior, which was confirmed by UV‐Vis and DLS measurements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1143–1150  相似文献   

16.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

17.
The triblock copolymer poly(ϵ‐caprolactone)‐block‐poly[(methyl methacrylate)‐co‐styrene]‐block‐poly(ϵ‐caprolactone) was synthesized by a combination of coordination polymerization and controlled radical mechanism. The poly(ϵ‐caprolactone) prepolymers (PCLBP) were first obtained by coordination polymerization using benzopinacol as the initiator and aluminium triisopropoxide as the promoter at room temperature. It was determined by means of UV and NMR spectroscopy that the benzopinacolate groups are left intact in the PCLBP prepolymers; no isomerization was found. The benzopinacolate groups incorporated into the poly(ϵ‐caprolactone) then initiate the copolymerization of styrene (St) and methyl methacrylate (MMA) via a controlled radical mechanism at 95°C. The desired block copolymers were characterized by GPC, IR, UV and NMR spectroscopy in detail.  相似文献   

18.
Poly(glycidyl methacrylate) (PGMA) was synthesized by the RAFT method in the presence of 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) chain transfer agent using different [GMA]/[CPDB] molar ratios. The living radical polymerization resulted in controlled molecular weights and narrow polydispersity indices (PDI) of ≈1.1. The polymerization of pentafluorostyrene (PFS) with PGMA as the macro‐RAFT agent yielded narrow PDIs of ≤1.2 at 60 °C and ≤1.5 at 80 °C. The epoxy groups of the PGMA block were hydrolyzed to obtain novel amphiphilic copolymer, poly(glyceryl methacrylate)‐block‐poly(pentafluorostyrene) [PGMA(OH)‐b‐PPFS]. The PGMA epoxy group hydrolysis was confirmed by 1H NMR and FTIR spectroscopy. DSC investigation revealed that the PGMA‐b‐PPFS polymer was amorphous while the PGMA(OH)‐b‐PPFS displayed a high degree of crystallinity.

  相似文献   


19.
Poly(p‐xylylene)s (PPX) have found wide applications in various fields owing to their chemical robustness, low gas permeability and excellent dielectric properties. As a structural isomer of PPX, poly(o‐xylylene)s (POX), possessing a distinct main‐chain connectivity, are excellent candidates to pursue high‐performance materials; however, the investigation of POX is hampered by the lack of efficient synthetic methods. Herein, we report a straightforward way to access POXs through a cobalt‐catalyzed reductive polymerization. This method not only allows the direct preparation of electronically unmodified POXs, but also enables the copolymerization between o‐xylylene dibromides bearing different aryl or benzylic substituents. The glass transition temperatures of the copolymers can be finely tuned by varying the ratio between comonomers. The obtained POXs are solvent processible and amenable for thin‐film fabrication. As aryl bromide moiety remains untouched during the polymerization, post‐polymerization functionalization is easily achieved through Suzuki‐Miyaura coupling reaction. The chemistry also enables the copolymerization of xylylene dibromide regioisomers, thereby leading to diversified non‐conjugated polymers, whose backbones are rich in arylene moieties. Moreover, the use of the polymerization strategy to synthesize structurally novel porous polymers is demonstrated.  相似文献   

20.
The negatively charged, water‐soluble, hydrophobically modified poly(sodium glutamate)s containing different amounts of alkyl grafts were synthesized. First, poly(γ‐benzyl‐L‐glutamate) was prepared by ring‐opening polymerization of the corresponding N‐carboxyanhydride, which was in the next step aminolysed with octylamine. After removal of the remaining benzyl protective groups, the alkyl‐modified poly(sodium glutamate)s [P(Glu‐oa)] were obtained and, together with the oppositely charged N,N,N‐trimethyl chitosan (TMC), used for the preparation of nanoparticles (NPs) of a recombinant granulocyte colony‐stimulating factor (GCSF) protein by polyelectrolyte complexation method. It is observed that, beside electrostatic interaction, the hydrophobic grafts on poly(sodium glutamate)s significantly contribute to association efficiency (AE) with GCSF protein. The addition of TMC solution to the dispersion of GCSF/P(Glu‐oa) complexes results in formation of much more defined NPs with high AE and final protein loading. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2976–2985  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号