首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
Reactivity studies of dicarba[2]ferrocenophanes and also their corresponding ring‐opened oligomers and polymers have been conducted in order to provide mechanistic insight into the processes that occur under the conditions of their thermal ring‐opening polymerisation (ROP) (300 °C). Thermolysis of dicarba[2]ferrocenophane rac‐[Fe(η5‐C5H4)2(CHPh)2] (rac‐ 14 ; 300 °C, 1 h) does not lead to thermal ROP. To investigate this system further, rac‐ 14 was heated in the presence of an excess of cyclopentadienyl anion, to mimic the postulated propagating sites for thermally polymerisable analogues. This afforded acyclic [(η5‐C5H5)Fe(η5‐C5H4)‐CH2Ph] ( 17 ) through cleavage of both a Fe?Cp bond and also the C?C bond derived from the dicarba bridge. Evidence supporting a potential homolytic C?C bond cleavage pathway that occurs in the absence of ring‐strain was provided through thermolysis of an acyclic analogue of rac‐ 14 , namely [(η5‐C5H5)Fe(η5‐C5H4)(CHPh)2‐C5H5] ( 15 ; 300 °C, 1 h), which also afforded ferrocene derivative 17 . This reactivity pathway appears general for post‐ROP species bearing phenyl substituents on adjacent carbons, and consequently was also observed during the thermolysis of linear polyferrocenylethylene [Fe(η5‐C5H4)2(CHPh)2]n ( 16 ; 300 °C, 1 h), which was prepared by photocontrolled ROP of rac‐ 14 at 5 °C. This afforded ferrocene derivative [Fe(η5‐C5H4CH2Ph)2] ( 23 ) through selective cleavage of the ?H(Ph)C?C(Ph)H? bonds in the dicarba linkers. These processes appear to be facilitated by the presence of bulky, radical‐stabilising phenyl substituents on each carbon of the linker, as demonstrated through the contrasting thermal properties of unsubstituted linear trimer [(η5‐C5H5)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H5)] ( 29 ) with a ?H2C?CH2? spacer, which proved significantly more stable under analogous conditions. Evidence for the radical intermediates formed through C?C bond cleavage was detected through high‐resolution mass spectrometric analysis of co‐thermolysis reactions involving rac‐ 14 and 15 (300 °C, 1 h), which indicated the presence of higher molecular weight species, postulated to be formed through cross‐coupling of these intermediates.  相似文献   

2.
Treatment of N‐heterocyclic silylene Si[N(tBu)CH]2 ( 1 ) and [(η3‐C3H5)PdCl]2 in toluene led to the formation of the mononuclear complex (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl ( 3 ), the silicon analogue to N‐heterocyclic carbene complex (η3‐C3H5)Pd{C[N(tBu)CH]2}Cl ( 2 ). Complex 3 was characterized with 1H NMR and 13C NMR. Investigation shows that (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl is an active catalyst for Heck coupling reaction of styrene with aryl bromides.  相似文献   

3.
Oxidation of lithiodicyclopentadienylrhenium by organic carbonyl compounds gives the complex (C20H20Re2). Spectroscopic data show that this complex consists of two rhenocene fragments, {(C5H)5Re}, linked by a metal-metal bond, and so that it must be represented as a dimer of rhenocene, {(C5H5)Re}2. Reaction of the dimer with benzyl bromide gives {(C5H5)2ReCH2C6H5} and {(C5H52ReBr}, while thermolysis gives the new dimeric complex {(C5H5)2(C5H4)2Re2} and two equivalents of {(C5H5)ReH} and photolysis (λ ? 410 nm) gives [{η4- (C5H6)(C5H5)Re}{η51-(C5H4)(C5H5)Re}].  相似文献   

4.
The reaction of the base‐free terminal thorium imido complex [{η5‐1,2,4‐(Me3C)3C5H2}2Th?N(p‐tolyl)] ( 1 ) with p‐azidotoluene yielded irreversibly the tetraazametallacyclopentene [{η5‐1,2,4‐(Me3C)3C5H2}2Th{N(p‐tolyl)N?N? N(p‐tolyl)}] ( 2 ), whereas the bridging imido complex [{[η5‐1,2,4‐(Me3C)3C5H2]Th(N3)2}2{μ‐N(p‐tolyl)}2][(n‐C4H9)4N]2 ( 3 ) was isolated from the reaction of 1 with [(n‐C4H9)4N]N3. Unexpectedly, upon the treatment of 1 with 9‐diazofluorene, the NN bond was cleaved, an N atom was transferred, and the η2‐diazenido iminato complex [{η5‐1,2,4‐(Me3C)3C5H2}2Th{η2‐[N?N(p‐tolyl)]}{N?(9‐C13H8)}] ( 4 ) was formed. In contrast, the reaction of 1 with Me3SiCHN2 gave the nitrilimido complex [{η5‐1,2,4‐(Me3C)3C5H2}2Th{NH(p‐tolyl)}{N2CSiMe3}] ( 5 ), which slowly converted into [{η5‐1,2,4‐(Me3C)3C5H2}{η5:κ‐N‐1,2‐(Me3C)2‐4‐CMe2(CH2NN?CHSiMe3)C5H2}Th{NH(p‐tolyl)}] ( 6 ) by intramolecular C? H bond activation. The experimental results are complemented by density functional theory (DFT) studies.  相似文献   

5.
A coordinatively unsaturated iron‐methyl complex having an N‐heterocyclic carbene ligand, [Cp*Fe(LMe)Me] ( 1 ; Cp*=η5‐C5Me5, LMe=1,3,4,5‐tetramethyl‐imidazol‐2‐ylidene), is synthesized from the reaction of [Cp*Fe(TMEDA)Cl] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with methyllithium and LMe. Complex 1 is found to activate the C? H bonds of furan, thiophene, and benzene, giving rise to aryl complexes, [Cp*Fe(LMe)(aryl)] (aryl=2‐furyl ( 2 ), 2‐thienyl ( 3 ), phenyl ( 4 )). The C? H bond cleavage reactions are applied to the dehydrogenative coupling of furans or thiophenes with pinacolborane (HBpin) in the presence of tert‐butylethylene and a catalytic amount of 1 (10 mol % to HBpin). The borylation of the furan/thiophene or 2‐substituted furans/thiophenes occurs exclusively at the 2‐ or 5‐positions, respectively, whereas that of 3‐substituted furans/thiophenes takes place mainly at the 5‐position and gives a mixture of regioisomers. Treatment of 2 with 2 equiv of HBpin results in the quantitative formation of 2‐boryl‐furan and the borohydride complex [Cp*Fe(LMe)(H2Bpin)] ( 5 ). Heating a solution of 5 in the presence of tert‐butylethylene led to the formation of an alkyl complex [Cp*Fe(LMe)CH2CH2tBu] ( 6 ), which was found to cleave the C? H bond of furan to produce 2 . On the basis of these results, a possible catalytic cycle is proposed.  相似文献   

6.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

7.
Several heterometallic nitrido complexes were prepared by reaction of the imido–nitrido titanium complex [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] ( 1 ) with amido derivatives of Group 13–15 elements. Treatment of 1 with bis(trimethylsilyl)amido [M{N(SiMe3)2}3] derivatives of aluminum, gallium, or indium in toluene at 150–190 °C affords the single‐cube amidoaluminum complex [{(Me3Si)2N}Al{(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}] ( 2 ) or the corner‐shared double‐cube compounds [M(μ3‐N)33‐NH)3{Ti35‐C5Me5)33‐N)}2] [M=Ga ( 3 ), In ( 4 )]. Complexes 3 and 4 were also obtained by treatment of 1 with the trialkyl derivatives [M(CH2SiMe3)3] (M=Ga, In) at high temperatures. The analogous reaction of 1 with [{Ga(NMe2)3}2] at 110 °C leads to [{Ga(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}2] ( 5 ), in which two [GaTi3N4] cube‐type moieties are linked through a gallium–gallium bond. Complex 1 reacts with one equivalent of germanium, tin, or lead bis(trimethylsilyl)amido derivatives [M{N(SiMe3)2}2] in toluene at room temperature to give cube‐type complexes [M{(μ3‐N)23‐NH)Ti35‐C5Me5)33‐N)}] [M=Ge ( 6 ), Sn ( 7 ), Pb ( 8 )]. Monitoring the reaction of 1 with [Sn{N(SiMe3)2}2] and [Sn(C5H5)2] by NMR spectroscopy allows the identification of intermediates [RSn{(μ3‐N)(μ3‐NH)2Ti35‐C5Me5)33‐N)}] [R=N(SiMe3)2 ( 9 ), C5H5 ( 10 )] in the formation of 7 . Addition of one equivalent of the metalloligand 1 to a solution of lead derivative 8 or the treatment of 1 with a half equivalent of [Pb{N(SiMe3)2}2] afford the corner‐shared double‐cube compound [Pb(μ3‐N)23‐NH)4{Ti35‐C5Me5)33‐N)}2] ( 11 ). Analogous antimony and bismuth derivatives [M(μ3‐N)33‐NH)3{Ti35‐C5Me5)33‐N)}2] [M=Sb ( 12 ), Bi ( 13 )] were obtained through the reaction of 1 with the tris(dimethylamido) reagents [M(NMe2)3]. Treatment of 1 with [AlCl2{N(SiMe3)2}(OEt2)] affords the precipitation of the singular aluminum–titanium square‐pyramidal aggregate [{{(Me3Si)2N}Cl3Al2}(μ3‐N)(μ3‐NH)2{Ti35‐C5Me5)3(μ‐Cl)(μ3‐N)}] ( 14 ). The X‐ray crystal structures of 5 , 11 , 13 , 14 , and [AlCl{N(SiMe3)2}2] were determined.  相似文献   

8.
Photolysis of a hexane solution containing 1,1′- bis (trimethylsilylethynyl)ferrocene ( 1 ) and Fe (CO)5, under argon at 0 °C led to the formation of dinuclear complexes [Fe (CO)222 – C (SiMe3) = C(C5H4)FeC(C5H4) = C (SiMe3)Fe (CO)3}–μ–CO] ( 2 ) and [Fe (CO)222–C (SiMe3) = C(C5H5)–C(C5H5) = C (SiMe3)Fe (CO)3}–μ–CO] ( 3 ). DFT calculations support the experimentally observed demetalation of ferrocene unit of 2 to 3 in presence of water. These compounds were comprehensively characterized by IR and 1H and 13C NMR spectroscopy and crystallographically ( 1 and 3 ).  相似文献   

9.
The dimanganese bridging borylene complex [μ‐BMes {(η5‐C5H4Me)Mn(CO)2}2] was synthesized from Mes(Cl)BB(Cl)Mes and K[(η5‐C5H4Me)Mn(CO)2H] at low temperature, providing a small sample after manual separation of crystals, allowing a perfunctory spectroscopic analysis, but affording conclusive X‐ray crystallographic structural data. The trimetallic bridging borylene complex [(μ3‐BCl){{(η5‐C5H4Me)Mn(CO)2} {Pd(PCy3)}2}] was prepared by the addition of [Pd(PCy3)2] to a solution of [μ‐BCl{(η5‐C5H4Me)Mn(CO)2}2], affording pure crystals that were fully characterised including X‐ray crystallographic analysis. The structure is reconciled with detailed theoretical analysis for related model complexes, [(μ3‐BX){{(η5‐C5H5)Mn(CO)2}{Pd(PMe3)}2}] (X = Me, Cl).  相似文献   

10.
A new ferrocenylnaphthoxazole [(η5-C5H5)Fe{(η5-C5H4)C(O)N(C10H6)}] (1) was synthesized under mild conditions. Two mercurated derivatives: ortho-mercurated product [HgCl{(η5-C5H5)Fe[(η5-C5H3)C(O)N(C10H6)]}] (2) and the product mercurated on the unsubstituted Cp ring [HgCl{(η5-C5H4)Fe[(η5-C5H4)C(O)N(C10H6)]}] (3) were obtained by the reaction of 1 with mercuric acetate. All the new compounds 1, 2 and 3 were characterized by elemental analyses, IR, NMR, MS spectra and X-ray crystal structure analysis. The crystal structure of 1 extended into a 2D supramolecular network through the intermolecular π-π stacking interaction between the Cp ring and naphthoxazole ring. In the crystal of 2, there exist bridged Cl-Hg bonds, CH(Cp) ? Cl and CH? Hg hydrogen bonds, π-π stacking interactions, which facilitate construction of this complex into a 3D supramolecular structure.  相似文献   

11.
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature.  相似文献   

12.
《Tetrahedron: Asymmetry》1998,9(23):4219-4238
A wide variety of planar chiral cyclopalladated compounds of general formulae [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl(L)] (with L=py-d5 or PPh3), [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}(acac)] or [Pd{[(R1–CC–R2)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (with R1=R2=Et; R1=Me, R2=Ph; R1=H, R2=Ph; R1=R2=Ph; R1=R2=CO2Me or R1=CO2Et, R2=Ph) are reported. The diastereomers {(Rp,R) and (Sp,R)} of these compounds have been isolated by either column chromatography or fractional crystallization. The free ligand (R)-(+)-[{(η5-C5H4)–CHN–CH(Me)–C10H7}Fe(η5–C5H5)] (1) and compound (+)-(Rp,R)-[Pd{[(Et–CC–Et)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (7a) have also been characterized by X-ray diffraction. Electrochemical studies based on cyclic voltammetries of all the compounds are also reported.  相似文献   

13.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

14.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

15.
A wide range of potential ligand precursors and related compounds have been synthesized from ferrocenyldibromoborane and ferrocenylenebis(dibromoborane) via salt elimination reactions. These comprise ligand precursors suitable for the preparation of (i) ansa‐metallocenes such as [FcB(η1‐C5H5)2] ( 2 ), [FcB(1‐C9H7)2] ( 3 ), [FcB(3‐C9H7)2] ( 4 ) and [1,1′‐fc{B(3‐C9H7)2}2] ( 11 ), (ii) constrained geometry complexes such as [FcB(1‐C9H7)N(H)Ph] ( 7 ) and [FcB(3‐C9H7)N(H)Ph] ( 8 ), (iii) ansa‐diamido complexes such as [FcB(N(H)Ph)2] ( 9 ) as well as (iv) the related compounds [FcB(Br)N(H)tBu] ( 5 ), [FcB(Br)N(H)Ph] ( 6 ), [1,1′‐fc{B(Br)N(SiMe3)2}2] ( 12 ) and [1,1′‐fc{B(Br)NiPr2}2] ( 13 ) (Fc = ferrocenyl, fc = ferrocenylene, C5H5 = cyclopentadienyl, C9H7 = indenyl). All new compounds have been characterised by multinuclear NMR spectroscopic techniques and in the case of 7 and 12 by X‐ray diffraction methods.  相似文献   

16.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

17.
The reactions of the Group 4 metallocene alkyne complexes, [Cp*2M(η2‐Me3SiC2SiMe3)] ( 1 a : M=Ti, 1 b : M=Zr, Cp*=η5‐pentamethylcyclopentadienyl), with the ferrocenyl nitriles, Fc?C?N and Fc?C?C?C?N (Fc=Fe(η5‐C5H5)(η5‐C5H4)), is described. In case of Fc?C?N an unusual nitrile–nitrile C?C homocoupling was observed and 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes ( 3 a , b ) were obtained. As the first step of the reaction with 1 b , the nitrile was coordinated to give [Cp*2Zr(η2‐Me3SiC2SiMe3)(N?C‐Fc)] ( 2 b ). The reactions with the 3‐ferrocenyl‐2‐propyne‐nitrile Fc?C?C?C?N lead to an alkyne–nitrile C?C coupling of two substrates and the formation of 1‐metalla‐2‐aza‐cyclopenta‐2,4‐dienes ( 4 a , b ). For M=Zr, the compound is stabilized by dimerization as evidenced by single‐crystal X‐ray structure analysis. The electrochemical behavior of 3 a , b and 4 a , b was investigated, showing decomposition after oxidation, leading to different redox‐active products.  相似文献   

18.
This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η5‐C5Me5)IrIII fragment. The new complexes have the chemical composition [Ir(Ap)(η5‐C5Me5)]+, exist in the form of two isomers ( 1+ and 2+ ) and were isolated as salts of the BArF? anion (BArF=B[3,5‐(CF3)2C6H3]4). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2, the electrophilicity of the IrIII centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well‐known κ2‐N,N′‐bidentate binding in 1+ and the unprecedented κ‐N3‐pseudo‐allyl‐coordination mode in isomers 2+ through activation of a benzylic C?H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H?H, C?H and N?H bonds, is catalysed by dihydrogen under homogeneous conditions.  相似文献   

19.
The ring‐opening polymerization (ROP) behavior of a variety of substituted 1,1′‐ethylenylferrocenes, or dicarba[2]ferrocenophanes, is reported. The electronic absorption spectra and tilted solid‐state structures of the monomers rac‐[Fe(η5‐C5H4)2(CHiPr)2] ( 7 ), [Fe(η5‐C5H4)2(C(H)MeCH2)] ( 8 ), and rac‐[Fe(η5‐C5H4)2(CHPh)2] ( 9 ) are consistent with the presence of substantial ring strain, which was exploited to synthesize soluble, well‐defined polyferrocenylethylenes (PFEs) [Fe(η5‐C5H4)2(C(H)MeCH2)]n ( 12 ) and [Fe(η5‐C5H4)2(CHPh)2]n ( 13 ) through photocontrolled ROP. Polymer chain lengths could be controlled by the monomer‐to‐initiator ratio up to about 50 repeat units and, consistent with the “living” nature of the polymerizations, sequential block copolymerization with a sila[1]ferrocenophane led to polyferrocenylethylene–polyferrocenylsilane (PFE‐b‐PFS) block copolymers ( 14 and 15 ). PFE polymers 12 and 13 showed two reversible oxidation waves, indicative of appreciable Fe???Fe interactions along the polymer backbone. The diblock copolymers were characterized by NMR spectroscopy, GPC analysis, and cyclic voltammetry.  相似文献   

20.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号