首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) both were used to explore the impacts of different inductive substituents on the photophysical properties, radiative/nonradiative processes and photodeactivation mechanism for the Pt (II) complex with novel spiro‐arranged tetradentate ligand. Spectrum simulations show that the electron donor methoxyl (‐OCH3) group can cause the emission wavelength to red‐shift but have little effect on the absorption spectrum. In the simulation of the radiative decay process for the tetradentate Pt (II) complex, the singlet‐triplet splitting energy is reduced by the introduction of substituents with strong electron‐releasing capability (i.e., from the original trifluoromethyl (‐CF3) group to ‐OCH3 group), accompanied with a lower radiative rate constant (kr). The analyses of non‐radiative decay processes show that the substitution of ‐OCH3 group on azole rings reduces the energy barriers of thermally activated non‐radiative photodeactivation pathway, which in turn increases the temperature‐dependent non‐radiative rate constants (knr(T)). In addition, the substitution of ‐CF3 by ‐OCH3 group slightly weakens molecular rigidity and enhances the Huang‐Rhys factor, but decreases the SOC between the triplex excited (T) state and the ground (S0) state. Thereby, the two complexes may have the similar temperature‐independent non‐radiative rate constant (knr’). This work offers theoretical guidance for the design and optimization of the efficient organic light emitting diode (OLED) materials based on the structure of tetradentate Pt (II) complexes.  相似文献   

2.
Uncovering the photodeactivation mechanisms of unique N‐heterocyclic carbene (NHC)‐based transition metal complexes is favorable for designing more high‐efficiency phosphorescent materials. In this work, four bidentate platinum (II) complexes with NHC‐chelate are investigated by the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) to probe into how the ring size of NHC‐chelate unit influences on electronic structures and the phosphorescent properties. To illustrate the photodeactivation mechanisms clearly, three significant photodeactivation processes (radiative decay process, temperature‐independent and temperature‐dependent nonradiative decay processes) were taken into consideration. We stated that radiative decay rate constants kr slightly increased with declined number of NHC‐chelate ring, owing to the gradually larger SOC matrix elements between the T1 state and Sn states. Combining the temperature‐independent with temperature‐dependent nonradiative decay processes, the nonradiative decay rate knr is Pt‐4 (five‐membered) < Pt‐3 (six‐membered) < Pt‐2 (seven‐membered) < Pt‐1 (eight‐membered). The calculated results testify that the decrease of size of the NHC chelating unit is a reliable insurance to improve the quantum yield. The designed complex Pt‐4 with five‐membered NHC‐ring can serve as a highly efficient phosphorescent material in the future. The results indicated controlling the ring size of NHC‐chelate is a feasible method to tune phosphorescence properties of Pt (II) complexes.  相似文献   

3.
Importing intramolecular hydrogen bond in phosphorescent transition metal complexes has been considered one of the excellent approaches to improve the electroluminescence performance of organic light-emitting diodes in real applications. However, the relationships between such H-bond structure and phosphorescent properties have not been theoretically revealed yet. In this study, two types of intramolecular hydrogen bonds are introduced into the two classes of traditional materials, that is, Pt(II) and Ir(III) complexes ( 1a and 2a ) to completely elucidate their influence on the structures and properties by comparing with the original phosphors ( 1b and 2b ) using density functional theory/time-dependent density functional theory for the first time. A comprehensive analysis of the geometric structures, molecular orbitals, and luminescence properties (including phosphorescence emission wavelengths and radiative and nonradiative decay processes) has been carried out. Our theoretical model highlights that complexes 1a and 2a embedded with H-bonds significantly promote the phosphorescence emission band blue-shifted and restrict molecular deformations compared with the corresponding 1b and 2b , which can provide helpful guidance to regulate and design several aspects of highly efficient blue phosphorescent emitters.  相似文献   

4.
In this article, the influence of the tert‐butyl unit on the photodeactivation pathways of Pt[O^N^C^N] (O^N^C^N=2‐(4‐(3,5‐di‐tert‐butylphenyl)‐6‐(3‐(pyridin‐2‐l)phenyl) pyridin‐2‐yl)phenolate) is investigated by DFT/TDDFT calculations. To further explore the factors that determine the radiative processes, the transition dipole moments of the singlet excited states, spin–orbit coupling (SOC) matrix elements, and energy gaps between the lowest triplet excited states and singlet excited states are calculated. As demonstrated by the results, compared with Pt‐3 , Pt‐1 and Pt‐2 have larger SOC matrix elements between the lowest triplet excited states and singlet excited states, an indicator that they have faster radiative decay processes. In addition, the SOC matrix elements between the lowest triplet excited states and ground states are also computed to elucidate the temperature‐independent non‐radiative decay processes. Moreover, the temperature‐dependent non‐radiative decay mechanisms are also explored via the potential energy profiles.  相似文献   

5.
To get an insight into the structure–property relationships in a series of strongly phosphorescent platinum(II) complexes with tridentate C^N*N cyclometalated ligands, their electronic structures and electroluminescence properties were systematically investigated via density functional theory and time‐dependent density functional theory. Moreover, the factors related to the radiative and non‐radiative decay process, including the transition electric dipole moment μ(Sn), the energy difference between singlet and lowest triplet excited states ΔE(Sn–T1) and the spin–orbital coupling matrix elements ? S n | H ? SOC | T 1 ? , as well as the energy gap between T1 and S0 states ΔE(T1–S0) and absorption–emission Stokes shifts have been calculated. Fine emission color tuning and high phosphorescence quantum yield of phosphorescent complexes may be achieved through introducing five–six‐membered metallacycle geometries and linking a substituent (such as phenyl) at bridge atoms. Additionally, phosphorescent properties of these complexes show a clear dependence on the electronegativity of bridge atoms.  相似文献   

6.
In this work, density functional theory and time‐dependent density functional theory were used to investigate the effects of π‐conjugation of the ligand on the photophysical properties, radiative/nonradiative processes and phosphorescence quantum efficiency of tetradentate cyclometalated Pt (II) complex with carbazolyl‐pyridine ligands PtNON . By simulating the absorption spectra and emission wavelengths, increasing the π‐conjugation of the ligand could cause the absorption and emission wavelengths to red‐shift. The results of the computation of key parameters in the radiative decay process, such as singlet‐triplet splitting energy, transition dipole moment and spin‐coupled matrix element between the lowest triplet and singlet excited states, showed that the expansion of π‐conjugation on the carbazole ligand of PtNON resulted in reduction of these parameters, thereby reducing the radiation rate constant. The analyses of the PtNON nonradiative pathway also found that the high activation energy of PtNON made it one of the reasons for the high phosphorescence quantum yield. At the same time, enhancing the molecular orbital delocalization of the ligand further enlarged the energy barrier of the nonradiative pathway, and was conducive to the improvement of phosphorescence quantum yield.  相似文献   

7.
The geometries, energies, and electronic properties of a series of phosphorescent Pt(II) complexes including FPt, CFPt, COFPt, and NFPt have been characterized within density functional theory DFT calculations which can reproduce and rationalize experimental results. The properties of excited‐states of the Pt(II) complexes were characterized by configuration interaction with singles (CIS) method. The ground‐ and excited‐state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. In addition, we also have performed a triplet UB3LYP optimization for complex FPt and compared it with CIS method in the emission properties. The datum (562.52 nm) of emission wavelength for complex FPt, which were computed based on the triplet UB3LYP optimization excited‐state geometry, is not agreement with the experiment value (500 nm). The absorption and phosphorescence wavelengths were computed based on the optimized ground‐ and excited‐state geometries, respectively, by the time‐dependent density functional theory (TD‐DFT) methods. The results revealed that the nature of the substituent at the phenylpyridine ligand can influence the distributions of HOMO and LUMO and their energies. Moreover, the auxiliary ligand pyridyltetrazole can make the molecular structure present a solid geometry. In addition, the charge transport quality has been estimated approximately by the predicted reorganization energy (λ). Our result also indicates that the substitute groups and different auxiliary ligand not only change the nature of transition but also affect the rate and balance of charge transfer. By summarizing the results, we can conclude that the NFPt is good OLED materials with a solid geometry and a balanced charge transfer rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.  相似文献   

9.
We herein report a theoretical analysis based on a density functional theory/time‐dependent density functional theory (DFT/TDDFT) approach to understand the different phosphorescence efficiencies of a family of cyclometalated platinum(II) complexes: [Pt(NCN)Cl] ( 1 ; NCN=1,3‐bis(2‐pyridyl)phenyl?), [Pt(CNN)Cl] ( 2 ; CNN=6‐phenyl‐2,2′‐bipyridyl?), [Pt(CNC)(CNPh)] ( 3 ; CNC=2,6‐diphenylpyridyl2?), [Pt(R‐CNN)Cl] ( 4 ; R‐CNN=3‐(6′‐(2′′‐naphthyl)‐2′‐pyridyl)isoquinolinyl?), and [Pt(R‐CNC)(CNPh)] ( 5 ; R‐CNC=2,6‐bis(2′‐naphthyl)pyridyl2?). By considering both the spin–orbit coupling (SOC) and the electronic structures of these complexes at their respective optimized singlet ground (S0) and first triplet ( ) excited states, we were able to rationalize the experimental findings that 1) 1 is a strong emitter while its isomer 2 is only weakly emissive in CH2Cl2 solution at room temperature; 2) although the cyclometalated ligand of 3 has a higher ligand‐field strength than that of 1 , 3 is nonemissive in CH2Cl2 solution at 298 K; and 3) extension of π conjugation at the lateral aryl rings of the cyclometalated ligands of 2 and 3 to give 4 and 5 , respectively, leads to increased emission quantum yields under the same conditions. We found that Jahn–Teller and pseudo‐Jahn–Teller effects are operative in complexes 2 and 3 , respectively, on going from the optimized S0 ground state to the optimized excited state, and thus lead to large excited‐state structural distortions and hence fast nonradiative decay. Furthermore, a strong‐field ligand may push the two different occupied d orbitals so far apart that the SOC effect is small and the radiative decay rate is slow. This work is an example of electronic‐structure‐driven tuning of the phosphorescence efficiency, and the DFT/TDDFT approach is demonstrated to be a versatile tool for the design of phosphorescent materials with target characteristics.  相似文献   

10.
A butterfly‐like phosphorescent platinum(II) binuclear complex can undergo a molecular structure change in which the Pt–Pt distance shortens upon photoexcitation, which leads to the formation of two distinct excited states and dual emission in the steady state, that is, greenish‐blue emission from the high‐energy excited state at the long Pt–Pt distance and red emission from the low‐energy excited state at the short Pt–Pt distance. This photoinduced molecular structure change has a strong dependence on the molecule’s surrounding environment, allowing its application as self‐referenced luminescent sensor for solid–liquid phase change, viscosity, and temperature, with greenish‐blue emission in solid matrix and rising red emission in molten liquid phase. With proper control of the surrounding media to manipulate the structural change and photophysical properties, a broad white emission can be achieved from this molecular butterfly.  相似文献   

11.
In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a , [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b , and [Pt (Ndpp)CN] 2a? CN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a , the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered (3MC) state and the excited state (T1) was optimized. The 3MC state is found to be the minimum energy crossing point (MECP) between the T1 state and the S0 state. Compared with the complex 2a , the complex 2b possesses a much larger energy barrier to the MECP state from the T1 state, so it is strongly emissive in the green region. Besides, the introduction of ? CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials.  相似文献   

12.
The synthesis, structure, and solid‐state emission of vaulted trans‐bis(salicylaldiminato)platinum(II) complexes are described. A series of polymethylene ( 1 : n=8; 2 : n=9; 3 : n=10; 4 : n=11; 5 : n=12; 6 : n=13) and polyoxyethylene ( 7 : m=2; 8 : m=3; 9 : m=4) vaulted complexes (R=H ( a ), 3‐MeO ( b ), 4‐MeO ( c ), 5‐MeO ( d ), 6‐MeO ( e ), 4‐CF3O ( f ), 5‐CF3O ( g )) was prepared by treating [PtCl2(CH3CN)2] with the corresponding N,N′‐bis(salicylidene)‐1,ω‐alkanediamines. The trans coordination, vaulted structures, and the crystal packing of 1 – 9 have been unequivocally established from X‐ray diffraction studies. Unpredictable, structure‐dependent phosphorescent emission has been observed for crystals of the complexes under UV excitation at ambient temperature, whereas these complexes are entirely nonemissive in the solution state under the same conditions. The long‐linked complex crystals 4 – 6 , 8 , and 9 exhibit intense emission (Φ77K=0.22–0.88) at 77 K, whereas short‐linked complexes 1 – 3 and 7 are non‐ or slightly emissive at the same temperature (Φ77K<0.01–0.18). At 298 K, some of the long‐linked crystals, 4 a , 4 b , 5 c , 5 e , 6 c , 6 e , and 9 b , completely lose their high‐emission properties with elevation of the temperature (Φ298K<0.01–0.02), whereas the other long‐linked crystals, 5 a , 6 a , 9 a , and 9 d , exhibit high heat resistance towards emission decay with increasing temperature (Φ298K=0.21–0.38). Chromogenic control of solid‐state emission over the range of 98 nm can be performed simply by introducing MeO groups at different positions on the aromatic rings. Orange, yellow‐green, red, and yellow emissions are observed in the glass and crystalline state upon 3‐, 4‐, 5‐, and 6‐MeO substitution, respectively, whereas those with CF3O substituents have orange emission, irrespective of the substitution position. DFT calculations (B3LYP/6‐31G*, LanL2DZ) showed that such chromatic variation is ascribed to the position‐specific influence of the substituents on the highest‐occupied molecular orbital (HOMO) and lowest‐unoccupied molecular orbital (LUMO) levels of the trans‐bis(salicylaldiminato)platinum(II) platform. The solid‐state emission and its heat resistance have been discussed on the basis of X‐ray diffraction studies. The planarity of the trans‐coordination sites is strongly correlated to the solid‐state emission intensities of crystals 1 – 9 at lower temperatures. The specific heat‐resistance properties shown exclusively by the 5 a , 6 a , 9 a , and 9 d crystals are due to their strong three‐dimensional hydrogen‐bonding interactions and/or Pt???Pt contacts, whereas heat‐quenchable crystals 4 a , 4 b , 5 c , 5 e , 6 c , 6 e , and 9 b are poorly bound with limited interactions, such as non‐, one‐, or two‐dimensional hydrogen‐bonding networks. These results lead to the conclusion that Pt???Pt contacts are an important factor in the heat resistance of solid‐state phosphorescence at ambient temperature, although the role of Pt???Pt contacts can be substituted by only higher‐ordered hydrogen‐bonding fixation.  相似文献   

13.
A series of iridium complexes ( 1 – 5 ), which consist of two 2‐(2,4‐difluorophenyl)pyridine (dfppy)‐based primary ligands and one pyridinylphosphinate ancillary ligand, have been investigated theoretically for screening highly efficient deep‐blue light‐emitting materials. Compared with the reported dfppy‐based emitter 1 , the designed iridium complexes 3 – 5 with the introduction of a stronger electron‐withdrawing (–CN, –CF3 , or o‐carborane) group and a bulky electron‐donating (tert‐butyl) group in dfppy ligands can be achieved to display the emission peaks at 443, 442, and 447 nm, respectively. The electronic structures, absorption and emission properties, radiative and nonradiative processes of their excited states, and charge injection and transport properties of the iridium complexes are analyzed in detail. The calculated results show that designed iridium complexes have comparable radiative and nonradiative rate constants with 1 , and are expected to have similar quantum efficiency with 1 . Meanwhile, these designed complexes keep the advantages of the charge transport properties of 1 , indicating that they are potential iridium complexes for efficient deep‐blue phosphorescence. This work provides more in‐depth understanding the structure–property relationship of dfppy‐based iridium complexes, and shed lights on molecular design for deep‐blue phosphorescent metal complexes.  相似文献   

14.
定量理解光物理过程对于开发新型高效发射极至关重要. 优化提升二价铂配合物磷光量子效率是提升基于金属铂有机发光二极管发光效率的关键. 本文借助密度泛函理论计算, 探讨了一类平面四齿配位二价铂配合物磷光辐射的微观机制, 包括自旋轨道耦合积分、 辐射寿命、 速率常数、 跃迁偶极矩和隙间蹿跃通道. 综合研究发现, 沿着N→Pt方向推电子, 可有效屏蔽非辐射跃迁过程, 从而提升磷光发射效率. 本文将为高效发射器的分子工程学设计提供必要的指导.  相似文献   

15.
The development of organic light‐emitting diodes (OLEDs) has attracted enormous research efforts from both academia and industry in the past decades and tremendous progress has been made. However, the low operation lifetime of the blue phosphorescent OLEDs remains as one of the greatest bottlenecks limiting further applications of OLEDs. To address this problem, design and synthesis of triplet emitters with high phosphorescence quantum yield (ΦP) and adequate thermal, chemical, electrical and ultraviolet (UV) stabilities are vital. This review summarizes the progress we made on the development of efficient and robust phosphorescent emitters based on cyclometalated Pt(II) compounds, particularly the ones with blue emission, starting from complexes with triarylboron‐functionalized bidentate ligand to molecules incorporating tetradentate and macrocyclic ligands, with emphasis on their structure‐property relationships.  相似文献   

16.
Luminescent pincer‐type PtII complexes supported by C‐deprotonated π‐extended tridentate R C^N^N R′ ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time‐resolved fluorescence measurements and time‐dependent DFT calculations together reveal the dependence of excited‐state structural distortions of [Pt(R C^N^N R′)(CC‐C6F5)] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R‐C^N^N R′)(CC‐Ar)] are efficient photocatalysts for visible‐light‐induced reductive C C bond formation. The [Pt(R‐C^N^N R′)(CC‐C6F5)] complexes perform strongly as phosphorescent dopants for green‐ and red‐emitting organic light‐emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two‐photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).  相似文献   

17.
Luminescent pincer‐type PtII complexes supported by C‐deprotonated π‐extended tridentate R? C^N^N? R′ ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time‐resolved fluorescence measurements and time‐dependent DFT calculations together reveal the dependence of excited‐state structural distortions of [Pt(R? C^N^N? R′)(C?C‐C6F5)] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R‐C^N^N? R′)(C?C‐Ar)] are efficient photocatalysts for visible‐light‐induced reductive C? C bond formation. The [Pt(R‐C^N^N? R′)(C?C‐C6F5)] complexes perform strongly as phosphorescent dopants for green‐ and red‐emitting organic light‐emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two‐photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).  相似文献   

18.
The synthesis and characterization of eight unprecedented phosphorescent C^C* cyclometalated mesoionic aryl‐1,2,3‐triazolylidene platinum(II) complexes with different β‐diketonate ligands are reported. All compounds proved to be strongly emissive at room temperature in poly(methyl methacrylate) films with an emitter concentration of 2 wt %. The observed photoluminescence properties were strongly dependent on the substitution on the aryl system and the β‐diketonate ligand. Compared to acetylacetonate, the β‐diketonates with aromatic substituents (mesityl and duryl) were found to significantly enhance the quantum yield while simultaneously reducing the emission lifetimes. Characterization was carried out by standard techniques, as well as solid‐state structure determination, which confirmed the binding mode of the carbene ligand. DFT calculations, carried out to predict the emission wavelength with maximum intensity, were in excellent agreement with the (later) obtained experimental data.  相似文献   

19.
In this work, we theoretically investigate the effect of phenyl group on the electronic and phosphorescent properties of cyclometalated platinum(II) complexes, thereby designing an efficient blue emitting material. Three platinum(II) complexes Pt(N^N^N)Cl (N^N^N = terpyridine), Pt(N^C^N)Cl (N^C^N = 1,3-di(2-pyridyl)-benzene) and Pt(N^N^C)Cl (N^N^C = 6-phenyl-2,2′-bipyridines) are chosen as the models. Their electronic and phosphorescent properties are investigated utilizing quantum theoretical calculations. The results reveal that the phenyl group significantly affects the molecular and electronic structures, charge distribution and phosphorescent properties. The coordination bond length trans to phenyl group is the longest among the same type of bonds owing to the trans influence of phenyl group. Moreover, the phenyl group largely restricts the geometry relaxation of cyclometalated ligand. The strong σ-donor ability of Pt–C bond makes more electrons center at Pt atom and the fragments trans to phenyl group. In comparison with Pt(N^N^N)Cl and Pt(N^N^C)Cl, the complex Pt(N^C^N)Cl has the smallest excited-state geometry relaxation and the biggest emission energy and spatial overlap between the transition orbitals in the emission process. As a result, Pt(N^C^N)Cl has the largest emission efficiency, which well agrees with the experimental observation. Based on these calculation results, a potentially efficient blue-emitting material is designed via replacing pyridine groups in Pt(N^C^N)Cl by 3-methylimidazolin-2-ylidene.  相似文献   

20.
The presented work, submitted as a paper, deals with the substitution reactions of mononuclear and dinuclear platinum(II) complexes of di‐2‐pyridylaminodiaquaplatinum(II), ( Pt1 ); di‐2‐pyridylaminomethylbenzenediaquaplatinum(II), ( Pt2 ); 1,2‐bis(di‐2‐pyridylaminomethyl)benzenetetraquaplatinum(II), ( Pt3 ); 1,3‐bis(di‐2‐pyridylamino‐methyl)benzenetetraquaplatinum(II), ( Pt4 ); and 1,4‐bis(di‐2‐pyridylaminomethyl)‐benzenetetraquaplatinum(II), ( Pt5 ). These reactions were carried out on aqua complexes by three nucleophiles, viz., thiourea, N ,N ′‐dimethylthiourea, and N ,N ,N N ′‐tetramethylthiourea under pseudo–first‐order conditions as a function of nucleophile concentration and temperature by stopped‐flow and UV–visible spectrophotometric techniques. In addition, some DFT calculation was performed. The activation parameters support an associative substitution mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号