共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Yue Tang Idir Benaissa Mathieu Huynh Laure Vendier Noël Lugan Stphanie Bastin Philippe Belmont Vincent Csar Vronique Michelet 《Angewandte Chemie (International ed. in English)》2019,58(24):7977-7981
The synthesis and characterization of original NHC ligands based on an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold functionalized with a flanking barbituric heterocycle is described as well as their use as tunable ligands for efficient gold‐catalyzed C?N, C?O, and C?C bond formations. High activity, regio‐, chemo‐, and stereoselectivities are obtained for hydroelementation and domino processes, underlining the excellent performance (TONs and TOFs) of these IPy‐based ligands in gold catalysis. The gold‐catalyzed domino reactions of 1,6‐enynes give rise to functionalized heterocycles in excellent isolated yields under mild conditions. The efficiency of the NHC gold 5Me complex is remarkable and mostly arises from a combination of steric protection and stabilization of the cationic AuI active species by ligand 1Me . 相似文献
3.
Jared E. M. Fernando Yuji Nakano Changhe Zhang David W. Lupton 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(12):4047-4051
The catalytic umpolung of imines remains an underdeveloped approach to reaction discovery. Herein we report an enantioselective aza‐Stetter reaction that proceeds via imine umpolung using N‐heterocyclic carbene catalysis. The reaction proceeds with high levels of enantioselectivity (all ≥96:4 er) and good generality (21 examples). Mechanistic studies are reported and are consistent with turnover‐limiting addition of the NHC to the imine. 相似文献
4.
Leming Wang Xinhang Jiang Jiean Chen Yong Huang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(22):7488-7492
In contrast to well‐established asymmetric hydrogenation reactions, enantioselective protonation is an orthogonal approach for creating highly valuable methine chiral centers under redox‐neutral conditions. Reported here is the highly enantio‐ and diastereoselective hydrofluorination of enals by an asymmetric β‐protonation/α‐fluorination cascade catalyzed by N‐heterocyclic carbenes (NHCs). The two nucleophilic sites of a homoenolate intermediate, generated from enals and an NHC, are sequentially protonated and fluorinated. The results show that controlling the relative rates of protonation, fluorination, and esterification is crucial for this transformation, and can be accomplished using a dual shuttling strategy. Structurally diverse carboxylic acid derivatives with two contiguous chiral centers are prepared in a single step with excellent d.r. and ee values. 相似文献
5.
Zi‐Jing Zhang Ling Zhang Rui‐Long Geng Jin Song Xiao‐Hua Chen Liu‐Zhu Gong 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(35):12318-12322
Highly enantioselective [3+3] and [3+4] annulations of isatin‐derived enals with ethynylethylene carbonates and ethynyl benzoxazinanones are enabled by NHC/cooper cooperative catalysis, leading to a big library of spirooxindole derivatives in high structural diversity and enantioselectivity (up to 99 % ee). Both reactions represent a nicely synergistic integration of NHC and copper catalysis, in which both catalysts activate the substrates and the chiral NHC perfectly controls the stereochemistry. 相似文献
6.
7.
8.
Song Bae Changhe Zhang Rachel M. Gillard David W. Lupton 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(38):13504-13508
While the enantioselective Rauhut–Currier reaction is established with bis(enone) substrates, it is yet to be reported with less electrophilic bis(enoate) substrates. By exploiting high‐nucleophilicity N‐heterocyclic carbenes, it is possible to achieve Rauhut–Currier reactions with these substrates. The reaction is demonstrated with a range of intramolecular reactions (20 examples) and six esterification/RC reaction cascades, which all proceed with high enantioselectivity (most >93:7 er). 相似文献
9.
10.
11.
Di Hu Chen Yang Chun‐Nam Lok Fangrong Xing Pui‐Yan Lee Yi Man Eva Fung Haibo Jiang Chi‐Ming Che 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(32):11030-11034
New anticancer platinum(II) compounds with distinctive modes of action are appealing alternatives to combat the drug resistance and improve the efficacy of clinically used platinum chemotherapy. Herein, we describe a rare example of an antitumor PtII complex targeting a tumor‐associated protein, rather than DNA, under cellular conditions. Complex [(bis‐NHC)Pt(bt)]PF6 ( 1 a ; Hbt=1‐(3‐hydroxybenzo[b]thiophen‐2‐yl)ethanone) overcomes cisplatin resistance in cancer cells and displays significant tumor growth inhibition in mice with higher tolerable doses compared to cisplatin. The cellular Pt species shows little association with DNA, and localizes in the cytoplasm as revealed by nanoscale secondary ion mass spectrometry. An unbiased thermal proteome profiling experiment identified asparagine synthetase (ASNS) as a molecular target of 1 a . Accordingly, 1 a treatment reduced the cellular asparagine levels and inhibited cancer cell proliferation, which could be reversed by asparagine supplementation. A bis‐NHC‐ligated Pt species generated from the hydrolysis of 1 a forms adducts with thiols and appears to target an active‐site cysteine of ASNS. 相似文献
12.
13.
14.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(14):3950-3954
Metal N‐heterocyclic carbene (NHC) complexes are a promising class of anti‐cancer agents displaying potent in vitro and in vivo activities. Taking a multi‐faceted approach employing two clickable photoaffinity probes, herein we report the identification of multiple molecular targets for anti‐cancer active pincer gold(III) NHC complexes. These complexes display potent and selective cytotoxicity against cultured cancer cells and in vivo anti‐tumor activities in mice bearing xenografts of human cervical and lung cancers. Our experiments revealed the specific engagement of the gold(III) complexes with multiple cellular targets, including HSP60, vimentin, nucleophosmin, and YB‐1, accompanied by expected downstream mechanisms of action. Additionally, PtII and PdII analogues can also bind the cellular proteins targeted by the gold(III) complexes, uncovering a distinct pincer cyclometalated metal–NHC scaffold in the design of anti‐cancer metal medicines with multiple molecular targets. 相似文献
15.
16.
17.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(3):883-887
The coordination of N‐heterocyclic carbene (NHC) ligands to the surface of 3.7 nm palladium nanoparticles (PdNPs) can be unambiguously established by observation of Knight shift (KS) in the 13C resonance of the carbenic carbon. In order to validate this coordination, PdNPs with sizes ranging from 1.3 to 4.8 nm were prepared by thermal decomposition or reduction with CO of a dimethyl NHC PdII complex. NMR studies after 13CO adsorption established that the KS shifts the 13C resonances of the chemisorbed molecules several hundreds of ppm to high frequencies only when the particle exceeds a critical size of around 2 nm. Finally, the resonance of a carbenic carbon is reported to be Knight‐shifted to 600 ppm for 13C‐labelled NHCs bound to PdNPs of 3.7 nm. The observation of these very broad KS resonances was facilitated by using Car–Purcell–Meiboom–Gill (CPMG) echo train acquisition NMR experiments. 相似文献
18.
Xu Zhang Jiao Sun Guangfeng Wei Zhipan Liu Huimin Yang Kaimin Wang Honghan Fei 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(9):2870-2875
The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product. 相似文献
19.