首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Barton–Zard reaction of nitro substituted stilbenes and chalcones with ethyl isocyanoacetate afforded 3,4-diaryl- and 4-acyl-3-arylpyrroles, respectively. 3-Arylpyrrole-2,4- dicarboxylates and 4-arylisoxazoline N-oxides were side reaction products. Antimitotic activity of target 3,4-disubstituted pyrroles was studied on a sea urchin embryo model. Pyrroles unsubstituted at positions 2 and 5 were the most active. The activity increased with the number of methoxy groups in the Ar substituent.  相似文献   

2.
An improved final step in the Barton‐Zard pyrrole synthesis uses inexpensive potassium carbonate as base in the coupling‐cyclization reaction of vic‐nitro‐acetates with isocyanides. In this modification the isolated yields of synthetically useful 2‐carboalkoxypyrroles ( 1a,b and 3 ) and 2‐(p‐toluenesulfonyl)pyrroles (2a,b) consistently rise to the 78‐89% range. Conversion of 2a to 5‐(p‐toluenesulfonyl)‐2‐pyrrolinone 4 is conveniently and directly achieved by reaction with 30% hydrogen peroxide in acetic acid, thus circumventing the commonly used two step procedure involving bromination followed by solvolysis.  相似文献   

3.
3‐Phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine ( m 1 ) underwent cationic ring opening polymerization using BF3·OEt2 in alcoholic solution under mild conditions. The polymerization of m 1 proceeds through an intermediate hemiaminal ether leading mainly to the formation of polybenzoxazines with diphenylmethane bridges, and not only the classical Mannich‐type ones. During the first stages of the reaction, low‐molecular weight soluble oligomers containing benzoxazine rings are formed. At longer polymerization times, the propagation proceeds conventionally through the phenolic active sites. This polymerization mechanism is extensible to other substituted 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines but fails in the case of 3‐alkyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines or when the phenyl group in Position 3 have a substituent in the p‐position. Spectroscopic studies and kinetic experiments using model reactions and deuterium labeled benzoxazines, allow proposing a plausible different polymerization mechanism. These soluble benzoxazine‐containing polymers can be conveniently processed and impregnated on appropriate substrates before underwent crosslinking producing materials with comparable properties to those of conventional bis‐benzoxazines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5075–5084  相似文献   

4.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

5.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

6.
7.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

8.
A clean and efficient tandem oxidative cyclocondensation process is reported for the synthesis of 3,4‐dihydropyrimidin‐2(1H)‐one or ‐thione derivatives from primary aryl alcohols, β‐keto esters, and urea or thiourea in the presence of Al(NO3)3?9 H2O as oxidant catalyst (Scheme, Table 5).  相似文献   

9.
3‐Aminoquinoline‐2,4‐diones were stereoselectively reduced with NaBH4 to give cis‐3‐amino‐3,4‐dihydro‐4‐hydroxyquinolin‐2(1H)‐ones. Using triphosgene (=bis(trichloromethyl) carbonate), these compounds were converted to 3,3a‐dihydrooxazolo[4,5‐c]quinoline‐2,4(5H,9bH)‐diones. The deamination of the reduction products using HNO2 afforded mixtures of several compounds, from which 3‐alkyl/aryl‐2,3‐dihydro‐1H‐indol‐2‐ones and their 3‐hydroxy and 3‐nitro derivatives were isolated as the products of the molecular rearrangement.  相似文献   

10.
Beckmann rearrangement of (E)‐4‐chromanone oxime, (E)‐5‐oximino‐3,4‐dihydro‐1(2H)‐benzoxepines, and (E)‐5‐oximino‐3,4‐dihydro‐1(2H)‐benzothiepine are catalyzed by InBr3 and AgOTf in refluxing acetonitrile resulting in the formation of pharmaceutically active heterocycles benzoxazepin‐4‐one, 5‐oxo‐benzoxazocines, and 5‐oxo‐benzothiazocine derivative, respectively, in excellent yield. J. Heterocyclic Chem., (2012).  相似文献   

11.
陈瑞芳  钱长涛 《中国化学》2002,20(5):427-430
A general and practical procedure for the syntheses of 3,4-di-hydropyrimidine-2(1H)-thiones by a one-pot condensation of aldehyde,β-ketoester or β-diketone and thiourea using La(OTf)3 as the catalyst is described.Mild reaction conditions,excellent yields as well as the environmentally friendly character of La(OTf)3 make it an important alternative to the classic acid-catalyzed Biginelli‘s reaction.  相似文献   

12.
Diels–Alder reactions of 5‐methylthio‐2‐vinyl‐1H‐pyrroles with maleimides followed by isomerization gave tetrahydroindoles in moderate to good yield. Aromatization using activated MnO2 in refluxing toluene gave the corresponding 2‐methylthioindoles in good yields, and demethylthioation using Raney nickel gave the 2‐H indoles in excellent yields. The protection of the adducts produced aromatization in improved yield, demonstrating the effectiveness of the methylthio group as a protecting group for pyrroles; however, 5‐methylthio‐2‐vinylpyrrole was shown to perform with slightly less efficiency than 2‐vinylpyrrole in Diels–Alder reactions, indicating the protective group was more deactivating than desired. This route toward indoles offers high convergency and conveniently available starting materials that are easily purified. Bis‐methylthioated vinylpyrroles were shown to have potential as highly activated Diels–Alder dienes.  相似文献   

13.
Approaches toward the preparative‐scale synthesis of target 3,4‐dihydro‐1(2H)‐isoquinolinones 1–3 are presented. Compounds 1 and 2 were prepared via a Schmidt rearrangement on easily obtained indanone precursors, but in low overall yield. A better method to make this class of compounds is exemplified by the large‐scale synthesis of 2 via a Curtius rearrangement sequence. Thus, high‐temperature thermal cyclization of an in situ formed styryl isocyanate from precursor 8 in the presence of tributylamine gave the corresponding 1(2H)‐isoquinolinone ( 9 ). Catalytic hydrogenation of 9 provided the desired 3,4‐dihydro‐5‐methyl‐1(2H)‐isoquinolinone ( 2 ) in 65 % overall yield. Similar reduction of a commercially available 5‐hydroxy‐1(2H)‐isoquinolinone precursor 10 followed by an O ‐alkylation/amination sequence gave target 3 in good overall yield. The route proceeding via the Curtius rearrangement is recommended for large scale synthesis of other 3,4‐dihydro‐1(2H)‐isoquinolinones. Only when deactivating substituents or sensitive functionality within the benzenoid ring render the high temperature ring closure of the intermediate isocyanate inefficient might a Schmidt rearrangement protocol be the method of choice.  相似文献   

14.
4‐(4‐Chlorobenzylidene)‐2,5‐diphenyl‐2,3‐dihydro‐3H‐pyrazol‐3‐one 3a and 4‐(3,4‐dimethoxybenzylidene)‐5‐phenyl‐2,3‐dihydro‐3H‐pyrazol‐3‐one 3b were prepared and were reacted with phenylhydrazine, thiosemicarbazide, hydroxylamine hydrochloride, ethyl acetoacetate, diethylmalonate, malononitrile, ethyl cyanoacetate, and thiourea yielding fused pyrazole derivatives. Some of the new compounds were reacted with cyclic and acyclic sugars to produce new S‐, O‐, and N‐glycoside derivatives. The antitumor activity against the human breast cancer cells (MCF‐7) was assessed. Four of the new compounds showed IC50 values less than those of the positive control, indicating that these four compounds are better anticancer agents than doxorubicin.  相似文献   

15.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

16.
Two new structurally isomeric, 2‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[h]chromen‐2‐yl)‐1‐naphthol ( 1 ) and 3‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[g]chromen‐2‐yl)‐2‐naphthol ( 3 ) have been synthesized from 2‐acetyl‐1‐naphthol and ethyl‐3‐hydroxy‐2‐naphthoate, respectively, involving Grignard reaction, dehydration of the corresponding tertiary alcohols, and hetero Diels–Alder dimerization. The two benzochromenes ( 1 and 3 ) have been fully characterized by IR, NMR, and HRESIMS data. Their structures are further supported by crystallography of their corresponding acetates ( 2 and 4 ). J. Heterocyclic Chem., (2011).  相似文献   

17.
3‐Alkyl/aryl‐3‐hydroxyquinoline‐2,4‐diones were reduced with NaBH4 to give cis‐3‐alkyl/aryl‐3,4‐dihydro‐3,4‐dihydroxyquinolin‐2(1H)‐ones. These compounds were subjected to pinacol rearrangement by treatment with concentrated H2SO4, resulting in 4‐alkyl/aryl‐3‐hydroxyquinolin‐2(1H)‐ones. When a benzyl (Bn) group was present in position 3 of the starting compound, its elimination occurred during the rearrangement, and the corresponding 3‐hydroxyquinolin‐2(1H)‐one was formed. The reaction mechanisms are discussed for all transformations. All compounds were characterized by IR, 1H‐ and 13C‐NMR spectroscopy, as well as mass spectrometry.  相似文献   

18.
A series of novel 4‐(2‐(4‐bromophenyl)‐1,2,3‐triazol‐4‐yl)‐3,4‐dihydropyrimidin‐2(1H)‐ones/thiones were prepared by condensing 2‐(4‐bromophenyl)‐4‐formyl‐1,2,3‐triazole with 1,3‐dicarbonyl compound and urea or thiourea using Mg(NO3)2 as an efficient and cheap catalyst. The satisfactory results were obtained with excellent yields and short reaction time. J. Heterocyclic Chem., (2010).  相似文献   

19.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

20.
Ethyl 3,4‐dihydro‐2H‐1,4‐benzoxazine‐3‐carboxylate derivatives 2 were obtained and isolated in low yields from the condensation of 2‐aminophenol and ethyl 2,3‐dibromopropanoate. They can be obtained by hydrogenation of ethyl 2H‐1,4‐benzoxazine‐3‐carboxylate in satisfactory yield. Using 2‐iminophenol did not direct the condensation with ethyl 2,3‐dibromopropanoate towards 2 but was fruitfull for the preparation of ethyl 2‐(4‐benzyl‐3,4‐dihydro‐2H‐1,4‐benzoxazin‐3‐yl)acetate from ethyl bromocrotonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号