首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Macrocyclic ligands N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl dicarboxamide (H2L1) and N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]sebacoyl dicarboxamide (H2L2) were synthesized and characterized by various spectral techniques. Macrocyclic di- and tetra-homonuclear phenoxo bridged CuII, CoII, NiII, ZnII, CdII and HgII complexes have been synthesized through the template method by using the precursors 2,6-diformyl-4-methylphenol, succinoyldihydrazide/ sebacoyldihydrazide and respective metal chlorides in 2:2:2/2:2:4 ratio respectively. The synthesized complexes were characterized by i.r., n.m.r., u.v.-vis., FAB-mass, e.s.r., magnetic susceptibility and elemental analyses data. The elemental analyses and FAB-mass spectral data have justified the dinuclear and tetra nuclear structure for the complexes of the ligands H2L1 and H2L2 respectively. The observed low magnetic moment values revealed the existence of antiferromagnetic spin exchange interaction operating between the two metal centers. Electronic data suggested the octahedral geometry for NiII complexes and square pyramidal geometry for CuII, CoII, ZnII, CdII and HgII complexes of both the ligands. The CuII, CoII and ZnII complexes of both the ligands have shown good antifungal activity against Aspergillus niger and Fusarium oxysporum and medium to weak antibacterial activity against Escherichia coli and Staphylococcus aureus when compared to the standard drugs Grisefulvin and Ciprofloxacin respectively.  相似文献   

2.
We report herein a detailed study of the use of porphyrins fused to imidazolium salts as precursors of N‐heterocyclic carbene ligands 1 M . Rhodium(I) complexes 6 M – 9 M were prepared by using 1 M ligands with different metal cations in the inner core of the porphyrin (M=NiII, ZnII, MnIII, AlIII, 2H). The electronic properties of the corresponding N‐heterocyclic carbene ligands were investigated by monitoring the spectroscopic changes occurring in the cod and CO ancillary ligands of [( 1 M )Rh(cod)Cl] and [( 1 M )Rh(CO)2Cl] complexes (cod=1,5‐cyclooctadiene). Porphyrin–NHC ligands 1 M with a trivalent metal cation such as MnIII and AlIII are overall poorer electron donors than porphyrin–NHC ligands with no metal cation or incorporating a divalent metal cation such as NiII and ZnII. Imidazolium salts 3 M (M=Ni, Zn, Mn, 2H) have also been used as NHC precursors to catalyze the ring‐opening polymerization of L ‐lactide. The results clearly show that the inner metal of the porphyrin has an important effect on the reactivity of the outer carbene.  相似文献   

3.
CoII, NiII, CuII, ZnII and CdII complexes of N,N-bis(2-{[(2-methyl-2-phenyl-1,3-dioxolan-4-yl)methyl]amino}butyl)N′,N′-dihydroxyethanediimidamide (LH2) were synthesized and characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (TGA). The CoII, NiII and CuII complexes of LH2 were synthesized with 1?:?2 metal ligand stoichiometry. ZnII and CdII complexes with LH2 have a metal ligand ratio of 1?:?1. The reaction of LH2 with CoII, NiII, CuII, ZnII and CdII chloride give complexes Ni(LH)2, Cu(LH)2, Zn(LH2)(Cl)2, Cd(LH2)(Cl)2, respectively.  相似文献   

4.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

5.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

6.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

7.
The title novel two‐dimensional coordination polymer, {[Zn2(C10H8N3O2)4]·H2O}n, features a {Zn2L2} bimetallic ring repeat unit {L is the 3‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzoate ligand}. Each ZnII cation of the bimetallic ring is further bonded to two other L ligands, resulting in a novel infinite two‐dimensional network structure with two channels of different sizes. The crystallographically unique ZnII atom is thus six‐coordinated in a distorted octahedral environment of four carboxylate O atoms and two triazole N atoms. Two of these networks interpenetrate in an orthogonal arrangement to form the full three‐dimensional framework, with disordered water molecules located in the channels.  相似文献   

8.
The reaction of 3-formylsalicylic acid with 1,2-bis(o-aminophenylthio)ethane yielded a Schiff base with eight donor centres N2S2O4 of which the inner compartment is of an N2S2O2 type and the outer is of the O2O2 type. The base forms several mononuclear homo- and hetero-dinuclear complexes: e.g. mononuclear CuII, NiII and dinuclear CuII, NiII, UO2 VI complexes. Hetero-dinuclear complexes {[M]M}, where M = the inner metal ion CuII, NiII and M = the outer metal ion PdII, UO2 VI are also reported. The complexes were characterised by elemental analyses, spectral, thermal and magnetic measurements. Dicopper and dinickel complexes exhibit subnormal magnetic moments showing spin pairing between two metal centres, via the phenolato oxygen, whereas other mono-copper and mono-nickel complexes (both mononuclear and hetero-dinuclear) show the expected magnetic behaviour for 1e and 2e, respectively. The e.s.r. spectra of copper complexes also support the above behaviour.  相似文献   

9.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

10.
The ability of bridging thiophenolate groups (RS?) to transmit magnetic exchange interactions between paramagnetic NiII ions is examined. Specific attention is paid to complexes with large Ni? SR? Ni angles. For this purpose, dinuclear [Ni2L1(μ‐OAc)?I2][I5] ( 2 ) and trinuclear [Ni3L2(OAc)2][BPh4]2 ( 3 ), where H2L1 and H2L2 represent 24‐membered macrocyclic amino‐thiophenol ligands, are prepared and fully characterized by IR‐ and UV/Vis spectroscopy, X‐ray crystallography, static magnetization M measurements and high‐field electron spin resonance (HF‐ESR). The dinuclear complex 2 has a central N3Ni2(μ‐S)2(μ‐OAc)Ni2N3 core with a mean Ni? S? Ni angle of 92°. The macrocycle L2 supports a trinuclear complex 3 , with distorted octahedral N2O2S2 and N2O3S coordination environments for one central and two terminal NiII ions, respectively. The Ni? S? Ni angles are at 132.8° and 133.5°. We find that the variation of the bond angles has a very strong impact on the magnetic properties of the Ni complexes. In the case of the Ni2‐complex, temperature T and magnetic field B dependencies of M reveal a ferromagnetic coupling J=?29 cm?1 between two NiII ions (H=JS1S2). HF‐ESR measurements yield a negative axial magnetic anisotropy (D<0) which implies a bistable (easy axis) magnetic ground state. In contrast, for the Ni3‐complex we find an appreciable antiferromagnetic coupling J′=97 cm?1 between the NiII ions and a positive axial magnetic anisotropy (D>0) which implies an easy plane situation.  相似文献   

11.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

12.
The incorporation of CO2 into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiII to NiI by either Zn or Mn, followed by CO2 insertion into NiI‐alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu‐Xantphos)NiIIBr2 by Zn affords NiI species. (tBu‐Xantphos)NiI‐Me and (tBu‐Xantphos)NiI‐Et complexes undergo fast insertion of CO2 at 22 °C. The substantially faster rate, relative to that of NiII complexes, serves as the long‐sought‐after experimental support for the proposed mechanisms of Ni‐catalyzed carboxylation reactions.  相似文献   

13.
In the title compound, [ZnCl(C2H7N3S)2]Cl, the ZnII ion is five‐coordinated in a distorted trigonal–bipyramidal arrangement, with the hydrazine N atoms located in the apical positions. The structure is stabilized by N—H?Cl hydrogen bonds, which involve both the Cl atoms and all the hydrogen donors, except for one of the two thio­amide N atoms. A comparison of the geometry of thio­semicarbazide and S‐­methyl­iso­thio­semicarbazide complexes with ZnII, CuII and NiII shows the pronounced influence of the hydrogen‐bond network on the coordination geometry of ZnII compounds.  相似文献   

14.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

15.
Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido‐1κN1)bis(dimethyl sulfoxide)‐2κO,3κO‐bis{μ‐2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenolato}‐1:2κ6O,O′:O,N,N′,O′;1:3κ6O,O′:O,N,N′,O′‐dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155–2269 cm−1, which clearly proves the presence of terminal bonding dca groups. A single‐crystal X‐ray study revealed that two [CuL] units coordinate to an NiII atom through the phenolate O atoms, with double phenolate bridges between CuII and NiII atoms. Two terminal dca groups complete the distorted octahedral geometry around the central NiII atom. According to differential thermal analysis–thermogravimetric analysis (DTA–TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π–π*) transitions and fluorescence quenching is observed on complexation of H2L with CuII.  相似文献   

16.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

17.
Summary The preparations and characterisation are reported of a range of complexes of NiII, CuII, RhII, and PtII with 6-chloro-2-methoxyacridine substituted in the 9-position with –NH(CH2)nNR2 groups (where n=2 or 3, R=H or Me), and of complexes with 7-chloroquinoline analogously substituted in the 4-position. The preparations are also reported of complexes of the types [Rh(CH3CO2)2L]2, Cu(CH3CO2)2L2, PtL2Cl2, and (LH)2[PtCl4], where L=N-(2,2-dimethylaminoethyl)-3-nitro-1, 8-naphthalimide (mitonafide) and/or its 2,2-aminoethyl-, 2,2-aminopropyl-, or 2,2-dimethylaminopropyl analogues. Initial cytotoxicity studies are reported for some of the Pt compounds.  相似文献   

18.
Condensation of 1H-pyrazole-3,5-dicarboxylic hydrazide with 1H-indole-2,3-dione (isatin) yield the compartmental ligand, which is capable of encapsulating two transition metal ions namely CoII, NiII, CuII, and ZnII. The ligand is a binuclear hexadentate chelate with N4O2 donating sites. The pyrazole core provides the diazine fragment, which serves as an endogenous bridge between the two metal centers. In CoII and NiII complexes, the ligand is in the imidol form and the subsequent coordination through the imidol oxygen. In other complexes, the lactonic oxygen takes part in ligation. All the complexes are non-electrolytes and soluble in DMSO, DMF, and acetonitrile. Spectral and magnetic studies along with analytical data suggest octahedral geometry for the CoII and NiII complexes, whereas the CuII and ZnII complexes are assigned square pyramidal geometry. The CuII and NiII complexes show one electron redox behavior and the rest are electrochemically inactive.  相似文献   

19.
Two new tetranuclear NiII complexes, [Ni4(L1)2(N3)4(MeOH)2]·CH3COCH3 (1) and [Ni4(L2)2(N3)4(MeOH)2]·4CH3COCH3 (2) , were synthesized using NiCl2·6H2O, NaN3, and asymmetric salamo‐based ligands H2L1 and H2L2, respectively. The structural characterization was made by elemental analyses, infrared (IR) and ultraviolet‐visible (UV‐vis) spectra, and X‐ray diffraction analyses. The results of X‐ray diffraction analyses show that the NiII atoms in complexes 1 and 2 are distorted octahedral geometries. Interestingly, the degree of distortion of the ligands in complexes 1 and 2 is different, which indicates that the interaction of NiII ions on different ligands is different. Meanwhile, the investigation of molecular packing by employing the Hirshfeld surface analysis exhibits that the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts of the complex 1 (or 2 ) are calculated to be 17.7%, 7.9%, and 53.7% (or 18.8%, 13.8%, and 52.5%), respectively, where the H–H/H–H contacts have the characteristics of strong contacts whereas the O–H/H–O hydrogen bonds are considerably weak, and the studies on fluorescence properties further confirm the NiII atoms have different binding abilities to the different ligands.  相似文献   

20.
Summary The formation constants of 1-phenyl-3-thiazole-2-ylthiourea complexes with some bivalent metal ions (CuII, NiII, ZnII and MnII) have been determined in 75% EtOH–H2O. Complexes of CuII, NiII, ZnII, HgII and PdII have been isolated and characterized by conductance, i.r., electronic spectra and magnetic measurements. The ligand forms ML complexes with CuII and HgII and ML2 with NiII, ZnII and PdII, where L is the uninegatively charged bidentate ligand and binds through the ring nitrogen and thiocarbonyl sulphur atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号