首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aggregation‐induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI‐thiolate motifs on the AIE properties of Au NCs, by employing a series of water‐soluble glutathione (GSH)‐coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18]?, SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near‐infrared II (NIR‐II) region by controlling the length of the AuI‐SR motifs on the NC surface. Decreasing the length of AuI‐SR motifs also changes the origin of cluster luminescence from AIE‐type phosphorescence to Au0‐core‐dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

2.
Decreasing the core size is one of the best ways to study the evolution from AuI complexes into Au nanoclusters. Toward this goal, we successfully synthesized the [Au18(SC6H11)14] nanocluster using the [Au18(SG)14] (SG=L ‐glutathione) nanocluster as the starting material to react with cyclohexylthiol, and determined the X‐ray structure of the cyclohexylthiol‐protected [Au18(C6H11S)14] nanocluster. The [Au18(SR)14] cluster has a Au9 bi‐octahedral kernel (or inner core). This Au9 inner core is built by two octahedral Au6 cores sharing one triangular face. One transitional gold atom is found in the Au9 core, which can also be considered as part of the Au4(SR)5 staple motif. These findings offer new insight in terms of understanding the evolution from [AuI(SR)] complexes into Au nanoclusters.  相似文献   

3.
Aggregation-induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI-thiolate motifs on the AIE properties of Au NCs, by employing a series of water-soluble glutathione (GSH)-coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18], SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near-infrared II (NIR-II) region by controlling the length of the AuI-SR motifs on the NC surface. Decreasing the length of AuI-SR motifs also changes the origin of cluster luminescence from AIE-type phosphorescence to Au0-core-dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

4.
This Concept article provides an elementary discussion of a special class of large‐sized gold compounds, so‐called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few‐atom complexes, <1 nm) and face‐centered cubic (fcc) crystalline Au nanoparticles (typically >2 nm). The discussion is focused on the relationship between them, including the evolution from the Au???Au aurophilic interaction in AuI complexes to the direct Au? Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non‐fcc structures in nanoclusters. Thiolate‐protected Aun(SR)m nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.  相似文献   

5.
The dinuclear AuI complex containing the 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (xantphos) ligand and trifluoroacetate anions exists in a solvent‐free form, [μ‐4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene]bis[(trifluoroacetato)gold(I)], [Au2(C2F3O2)2(C39H32OP2)], (I), and as a dichloromethane solvate, [Au2(C2F3O2)2(C39H32OP2)]·0.58CH2Cl2, (II). The trifluoroacetate anions are coordinated to the AuI centres bridged by the xantphos ligand in both compounds. The AuI atoms are in distorted linear coordination environments in both compounds. The phosphine substituents are in a syn arrangement in the xantphos ligand, which facilitates the formation of short aurophilic Au...Au interactions of 2.8966 (8) Å in (I) and 2.9439 (6) Å in (II).  相似文献   

6.
The influence of the chemical substitution, crystal packing, and aurophilic interactions of the gold(I) acetylide complexes of the type (ArCOC≡C)nAuPEt3 (n=1,2) on their luminescent properties were examined. All described complexes undergo ligand scrambling in solution, which results in the formation of stable, easily isolated crystals that contain [ArCO(C≡C)n]2Au(Et3P)2Au+ homoleptic species. In particular, we observed that the (benzoylacetylide)gold(I) complex yields three crystal forms with strikingly different luminescence properties. We monitored the conversion pathway for these forms: an orange luminescent form of homoleptic complex upon drying undergoes spontaneous transformation to bright green fluorescent form and finally to the weakly blue emissive one. In addition, we report a rare example of a helical arrangement of Au⋅Au⋅Au chains that are observed for the first time in acetylide gold(I) complexes in the case of heteroleptic (benzoylacetylide)gold(I) complex. This is a very rare case in which crystal structures and ensuing electronic properties of the heteroleptic and AuI complexes could be directly compared.  相似文献   

7.
The title compound, [Au2(C10H4)(C3H9O3P)2]·0.5CH2Cl2, is a linear monomer in which each Au atom is coordinated by one acetylene and one phosphite group. Molecules are connected through aurophilic interactions, one short and one longer, approximately perpendicular to the intramolecular di(gold acetylide) unit, with an Au⋯Au(x, 1 − y, + z) distance of 3.1733 (2) Å and an Au⋯Au(−x, y, − z) distance of 3.5995 (3) Å. Comparison with related compounds exhibiting aurophilic interactions shows that the packing architecture is not determined by steric factors alone.  相似文献   

8.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

9.
The present study is aimed at elucidating the factors that direct the assembly of a specific family of AuI species. The assembly of AuI centers and dithiocarboxylato or xanthato ligands results in a surprising structural diversity observed by single‐crystal X‐ray diffraction. However, in solution, just evidences for discrete bimetallic [Au2L2] species have been observed. Interestingly, when dithiocarboxylato ligands have been used, a reversible supramolecular assembly has been observed forming the supramolecules of formulae [Au2L2]2 and [Au2L2]3. Initial studies on luminescent properties have been carried out at variable temperature. All the compounds show red emissions in the solid state at very similar energies, suggesting that the intramolecular interactions play a more relevant role in the luminescent properties than the intermolecular ones. The computational studies indicate that not only Au???Au interactions, but also Au???S and S???S ones play a role in the structure and energetic of the supramolecular species, as well as for the choice between supramolecular association or intramolecular oligomerization.  相似文献   

10.
Synthesis of atom‐precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]? cluster (SR: thiolate) using a pure [Ag25(SR)18]? cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25?xAux(SR)18]?, x=1–8. Mass spectrometry and crystallography of [Ag24Au(SR)18]? reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single‐atom level.  相似文献   

11.
The interaction energy of a [Au{C(NHMe)2}2]+ ... [Au{C(NHMe)2}2]+ dimer is investigated using the MP2 method and the LANL2DZ basis set when isolated or embedded in ionic an [Au{C(NHMe)2}2]2anion2 aggregate, a good model for the environment that these dimers feel in ionic crystals. A repulsive interaction energy is obtained when the dimer is isolated. However, it is possible to find short AuI ... AuI separations in [Au{C(NHMe)2}2]2anion2 aggregates, because in these aggregates the sum of the cation ... anion interactions overweight the sum of the cation ... cation plus anion...anion interactions. This explains why short AuI ... AuI separations are found in ionic crystals. The AuI ... AuI interaction found in [Au{C(NHMe)2}2]2 anion2 aggregates shows the same features observed in energetically stable dimers presenting AuI... AuI bonds. This makes appropriate to use the name counterion-mediated bonds for the AuI... AuI interactions found in [Au{C(NHMe)2}2]2 anion2 aggregates and ionic crystals.  相似文献   

12.
Two novel 1‐D chain complexes of a formal iminomethyl nitroxide radical [M(tpyimo)2]2[Au(CN)2]4 (M = Ni, Zn for 1 and 2 , typimo = 4,5‐dihydro‐4,4,5,5‐tetramethyl‐2‐(pyridin‐2‐yl)‐1H‐imidazol‐1‐yloxy), were synthesized and structurally characterized. Both 1‐D chains consist of two kinds of chair‐conformation rings, which include six metal atoms [M2Au4] (M = Ni, Zn), and are connected to each other alternately through aurophilic interactions. On the other hand, [Au(CN) ]4 oligomers are also formed through aurophilic interactions, and used as bridges in the 1‐D chains. The magnetic coupling between the NiII ion and the tpyimo radical in 1 is a strong ferromagnetic interaction. Strong ligand‐centered luminescence is observed at room temperature for both complexes.  相似文献   

13.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2]? ( 1 ?; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 ? acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4?, ClO4?, ReO4?). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au? S and Au? P bonds, which is essential for metallaring expansion and contraction.  相似文献   

14.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2] ( 1 ; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4, ClO4, ReO4). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au S and Au P bonds, which is essential for metallaring expansion and contraction.  相似文献   

15.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

16.
Metal–metal bonding interactions have been employed as an efficient strategy to generate a number of unique gold(I) metallo‐macrocycles with fascinating functions. The self‐assembly, crystal structure and emission property of novel nest‐like tetramer 14 , namely, {[Au4(μ‐dppm)2(μ‐dctp2?)](BF4)2}4 ? (CH3CN)2 (dppm=bis(diphenylphosphino)methane, dctp2?=N,N′‐bis(dicarbodithioate)‐2,11‐diaza[3.3]paracyclophane) is reported. The complex has been characterized by single‐crystal X‐ray diffraction analysis, 1H NMR spectroscopy, 13C NMR spectroscopy, and CSI‐MS spectrometry. The aggregate demonstrates the sixteen gold(I) atoms are arranged in a ring with a circumference of 50.011(68) Å generated by AuI???AuI attractions. UV/visible and luminescence spectroscopy revealed that this AuI???AuI bonded metallo‐macrocycle exhibited yellow phosphorescence.  相似文献   

17.
The title compound, [AuBr(C6H11NS)]n, formed through an AuIIIAuI reduction process, presents a polymeric structure including Au chains with alternating Au—Au distances of 3.0898 (8) and 3.1181 (8) Å. The coordination geometry is best described on the basis of linear [AuBr(C6H11NS)] mol­ecules, which are associated into a one‐dimensional polymer via a common aurophilic interaction.  相似文献   

18.
It is well known that alkynes act as π‐acids in the formation of complexes with metals. We found unprecedented attractive Au–π interactions in diacetylene‐modified [core+exo]‐type [Au8]4+ clusters. The 4‐phenyl‐1,3‐butadiynyl‐modified cluster has unusually short Au–Cα distances in the crystal structure, revealing the presence of attractive interactions between the coordinating C≡C moieties and the neighboring bitetrahedral Au6 core, which is further supported by IR and NMR spectra. Such weak interactions are not found in mono‐acetylene‐modified clusters, which indicates that they are specific for diacetylenic ligands. The attractive Au–π interactions are likely associated with the low energy of the π* orbital in the diacetylenic moieties, into which the valence electrons of the gold core may be back donated. The [Au8]4+ clusters show clear red‐shifts of >10 nm with respect to the corresponding mono‐acetylenic clusters in UV/Vis absorption bands, which indicates substantial electronic perturbation effects of the Au–π interactions.  相似文献   

19.
The title compound AuS2CNH2 was prepared from an aqueous solution by reaction of dicyanidoaurate [Au(CN)2] with excess of ammoniumdithiocarbamate NH4S2CN H 2 at pH ≈ 2. The compound crystallizes in the orthorhombic space group Cmma with a = 6.4597(2), b = 12.6556(3), and c = 5.3235(1) Å. The crystal structure comprises linear S–Au–S dumbbells forming unbranched zigzag chains in combination with the dithiocarbamate ligands. The three‐dimensional arrangement of the molecules is realized by aurophilic AuI–AuI and hydrogen bonding interactions, respectively. AuS2CNH2 presents orange luminescence due to a broad emission band between 12000 cm–1 and 23000 cm–1 (ν = 26316 cm–1).  相似文献   

20.
Ligands play an important role in determining the atomic arrangement within the metal nanoclusters. Here, we report a new nanocluster [Au23?xAgx(S‐Adm)15] protected by bulky adamantanethiol ligands which was obtained through a one‐pot synthesis. The total structure of [Au23?xAgx(S‐Adm)15] comprises an Au13?xAgx icosahedral core, three Au3(SR)4 units, and one AgS3 staple motif in contrast to the 15‐atom bipyramidal core previously seen in [Au23?xAgx(SR)16]. UV/Vis spectroscopy indicates that the HOMO–LUMO gap of [Au23?xAgx(S‐Adm)15] is 1.5 eV. DFT calculations reveal that [Au19Ag4(S‐Adm)15] is the most stable structure among all structural possibilities. Benefitting from Ag doping, [Au23?xAgx(S‐Adm)15] exhibits drastically improved photocatalytic activity for the degradation of rhodamine B (RhB) and phenol under visible‐light irradiation compared to Au23 nanoclusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号