首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A photoresponsive system where structure formation is coupled to catalytic activity is presented. The observed catalytic activity is reliant on intermolecular cooperative effects that are present when amphiphiles assemble into vesicular structures. Photoresponsive units within the amphiphilic pre‐catalysts allow for switching between assembled and disassembled states, thereby modulating the catalytic activity. The ability to reversibly form cooperative catalysts within a dynamic self‐assembled system represents a conceptually new tool for the design of complex artificial systems in water.  相似文献   

3.
4.
An artificial system of substrate-induced dimerization assembly of chiral macrocycle catalysts enables a highly cooperative hydrogen-bonding activation network for efficient enantioselective transformation. These macrocycles contain two thiourea and two chiral diamine moieties and dimerize with sulfate to form a sandwich-like assembly. The macrocycles then adopt an extended conformation and reciprocally complement the hydrogen-bonding interaction sites. Inspired by the guest-induced dynamic assembly, these macrocycles catalyze the decarboxylative Mannich reaction of cyclic aldimines containing a sulfamate heading group. The imine substrate can be activated toward nucleophilic attack of β-ketoacid by a cooperative hydrogen-bonding network enabled by sulfamate-induced dimerization assembly of the macrocycle catalysts. Highly efficient (>95 % yield in most cases) and enantioselective (up to 97.5:2.5 er) transformation of a variety of substrates using only 5 mol % macrocycle was achieved.  相似文献   

5.
Highly dynamic and complex systems of microtubules undergo a substrate‐induced change of conformation that leads to polymerization. Owing to the augmented catalytic potential at the polymerized state, rapid hydrolysis of the substrate is observed, leading to catastrophe, thus realizing the out‐of‐equilibrium state. A simple synthetic mimic of these dynamic natural systems is presented, where similar substrate induced conformational change is observed and a transient helical morphology is accessed. Further, augmented catalytic potential of these helical nanostructures leads to rapid hydrolysis of the substrate providing negative feedback on the stability of the nanostructures and realization of an out‐of‐equilibrium state. This simple system, made from amino acid functionalized lipids, demonstrates a substrate‐induced self‐assembled state, where the fuel‐to‐waste conversion leads to the temporal presence of helical nanostructures.  相似文献   

6.
7.
8.
9.
10.
11.
The catalytic umpolung of imines remains an underdeveloped approach to reaction discovery. Herein we report an enantioselective aza‐Stetter reaction that proceeds via imine umpolung using N‐heterocyclic carbene catalysis. The reaction proceeds with high levels of enantioselectivity (all ≥96:4 er) and good generality (21 examples). Mechanistic studies are reported and are consistent with turnover‐limiting addition of the NHC to the imine.  相似文献   

12.
Homochirality in peptides is crucial in sustaining “like–like” intermolecular interactions that allow the formation of assemblies and aggregates and is ultimately responsible for the resulting material properties. With the help of a series of stereoisomers of the tripeptide F–F–L, we demonstrate the critical role that peptide stereochemistry plays in the self‐assembly of peptides, guided by molecular recognition, and for self‐sorting. Homochiral self‐assemblies are thermally and mechanically more robust compared to heterochiral self‐assemblies. Morphological studies of the multicomponent peptide systems showed that aggregates formed from homochiral peptides possessed a uniform nano‐fibrous structure, whereas heterochiral systems resulted in self‐sorted systems with a heterogeneous morphology. In essence, homochiral peptides form the stronger aggregates, which may be one of reasons why homochirality is preferred in living systems.  相似文献   

13.
14.
15.
16.
17.
Here we report on how metastable supramolecular gels can be formed through seeded self‐assembly of multicomponent gelators. Hydrazone‐based gelators decorated with non‐ionic and anionic groups are formed in situ from hydrazide and aldehyde building blocks, and lead through multiple self‐sorting processes to the formation of heterogeneous gels approaching thermodynamic equilibrium. Interestingly, the addition of seeds composing of oligomers of gelators bypasses the self‐sorting processes and accelerates the self‐assembly along a kinetically favored pathway, resulting in homogeneous gels of which the network morphologies and gel stiffness are markedly different from the thermodynamically more stable gel products. Importantly, over time, these metastable homogeneous gel networks are capable of converting into the thermodynamically more stable state. This seeding‐driven formation of out‐of‐equilibrium supramolecular structures is expected to serve as a simple approach towards functional materials with pathway‐dependent properties.  相似文献   

18.
Highly enantioselective [3+3] and [3+4] annulations of isatin‐derived enals with ethynylethylene carbonates and ethynyl benzoxazinanones are enabled by NHC/cooper cooperative catalysis, leading to a big library of spirooxindole derivatives in high structural diversity and enantioselectivity (up to 99 % ee). Both reactions represent a nicely synergistic integration of NHC and copper catalysis, in which both catalysts activate the substrates and the chiral NHC perfectly controls the stereochemistry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号